Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Project: CMSIS DSP Library |
||
3 | * Title: arm_cfft_q31.c |
||
4 | * Description: Combined Radix Decimation in Frequency CFFT fixed point processing function |
||
5 | * |
||
6 | * $Date: 27. January 2017 |
||
7 | * $Revision: V.1.5.1 |
||
8 | * |
||
9 | * Target Processor: Cortex-M cores |
||
10 | * -------------------------------------------------------------------- */ |
||
11 | /* |
||
12 | * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. |
||
13 | * |
||
14 | * SPDX-License-Identifier: Apache-2.0 |
||
15 | * |
||
16 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
17 | * not use this file except in compliance with the License. |
||
18 | * You may obtain a copy of the License at |
||
19 | * |
||
20 | * www.apache.org/licenses/LICENSE-2.0 |
||
21 | * |
||
22 | * Unless required by applicable law or agreed to in writing, software |
||
23 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
24 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
25 | * See the License for the specific language governing permissions and |
||
26 | * limitations under the License. |
||
27 | */ |
||
28 | |||
29 | #include "arm_math.h" |
||
30 | |||
31 | extern void arm_radix4_butterfly_q31( |
||
32 | q31_t * pSrc, |
||
33 | uint32_t fftLen, |
||
34 | q31_t * pCoef, |
||
35 | uint32_t twidCoefModifier); |
||
36 | |||
37 | extern void arm_radix4_butterfly_inverse_q31( |
||
38 | q31_t * pSrc, |
||
39 | uint32_t fftLen, |
||
40 | q31_t * pCoef, |
||
41 | uint32_t twidCoefModifier); |
||
42 | |||
43 | extern void arm_bitreversal_32( |
||
44 | uint32_t * pSrc, |
||
45 | const uint16_t bitRevLen, |
||
46 | const uint16_t * pBitRevTable); |
||
47 | |||
48 | void arm_cfft_radix4by2_q31( |
||
49 | q31_t * pSrc, |
||
50 | uint32_t fftLen, |
||
51 | const q31_t * pCoef); |
||
52 | |||
53 | void arm_cfft_radix4by2_inverse_q31( |
||
54 | q31_t * pSrc, |
||
55 | uint32_t fftLen, |
||
56 | const q31_t * pCoef); |
||
57 | |||
58 | /** |
||
59 | * @ingroup groupTransforms |
||
60 | */ |
||
61 | |||
62 | /** |
||
63 | * @addtogroup ComplexFFT |
||
64 | * @{ |
||
65 | */ |
||
66 | |||
67 | /** |
||
68 | * @details |
||
69 | * @brief Processing function for the fixed-point complex FFT in Q31 format. |
||
70 | * @param[in] *S points to an instance of the fixed-point CFFT structure. |
||
71 | * @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. |
||
72 | * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. |
||
73 | * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. |
||
74 | * @return none. |
||
75 | */ |
||
76 | |||
77 | void arm_cfft_q31( |
||
78 | const arm_cfft_instance_q31 * S, |
||
79 | q31_t * p1, |
||
80 | uint8_t ifftFlag, |
||
81 | uint8_t bitReverseFlag) |
||
82 | { |
||
83 | uint32_t L = S->fftLen; |
||
84 | |||
85 | if (ifftFlag == 1U) |
||
86 | { |
||
87 | switch (L) |
||
88 | { |
||
89 | case 16: |
||
90 | case 64: |
||
91 | case 256: |
||
92 | case 1024: |
||
93 | case 4096: |
||
94 | arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); |
||
95 | break; |
||
96 | |||
97 | case 32: |
||
98 | case 128: |
||
99 | case 512: |
||
100 | case 2048: |
||
101 | arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle ); |
||
102 | break; |
||
103 | } |
||
104 | } |
||
105 | else |
||
106 | { |
||
107 | switch (L) |
||
108 | { |
||
109 | case 16: |
||
110 | case 64: |
||
111 | case 256: |
||
112 | case 1024: |
||
113 | case 4096: |
||
114 | arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); |
||
115 | break; |
||
116 | |||
117 | case 32: |
||
118 | case 128: |
||
119 | case 512: |
||
120 | case 2048: |
||
121 | arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle ); |
||
122 | break; |
||
123 | } |
||
124 | } |
||
125 | |||
126 | if ( bitReverseFlag ) |
||
127 | arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); |
||
128 | } |
||
129 | |||
130 | /** |
||
131 | * @} end of ComplexFFT group |
||
132 | */ |
||
133 | |||
134 | void arm_cfft_radix4by2_q31( |
||
135 | q31_t * pSrc, |
||
136 | uint32_t fftLen, |
||
137 | const q31_t * pCoef) |
||
138 | { |
||
139 | uint32_t i, l; |
||
140 | uint32_t n2, ia; |
||
141 | q31_t xt, yt, cosVal, sinVal; |
||
142 | q31_t p0, p1; |
||
143 | |||
144 | n2 = fftLen >> 1; |
||
145 | ia = 0; |
||
146 | for (i = 0; i < n2; i++) |
||
147 | { |
||
148 | cosVal = pCoef[2*ia]; |
||
149 | sinVal = pCoef[2*ia + 1]; |
||
150 | ia++; |
||
151 | |||
152 | l = i + n2; |
||
153 | xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2); |
||
154 | pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2); |
||
155 | |||
156 | yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2); |
||
157 | pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2); |
||
158 | |||
159 | mult_32x32_keep32_R(p0, xt, cosVal); |
||
160 | mult_32x32_keep32_R(p1, yt, cosVal); |
||
161 | multAcc_32x32_keep32_R(p0, yt, sinVal); |
||
162 | multSub_32x32_keep32_R(p1, xt, sinVal); |
||
163 | |||
164 | pSrc[2U * l] = p0 << 1; |
||
165 | pSrc[2U * l + 1U] = p1 << 1; |
||
166 | |||
167 | } |
||
168 | |||
169 | // first col |
||
170 | arm_radix4_butterfly_q31( pSrc, n2, (q31_t*)pCoef, 2U); |
||
171 | // second col |
||
172 | arm_radix4_butterfly_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U); |
||
173 | |||
174 | for (i = 0; i < fftLen >> 1; i++) |
||
175 | { |
||
176 | p0 = pSrc[4*i+0]; |
||
177 | p1 = pSrc[4*i+1]; |
||
178 | xt = pSrc[4*i+2]; |
||
179 | yt = pSrc[4*i+3]; |
||
180 | |||
181 | p0 <<= 1; |
||
182 | p1 <<= 1; |
||
183 | xt <<= 1; |
||
184 | yt <<= 1; |
||
185 | |||
186 | pSrc[4*i+0] = p0; |
||
187 | pSrc[4*i+1] = p1; |
||
188 | pSrc[4*i+2] = xt; |
||
189 | pSrc[4*i+3] = yt; |
||
190 | } |
||
191 | |||
192 | } |
||
193 | |||
194 | void arm_cfft_radix4by2_inverse_q31( |
||
195 | q31_t * pSrc, |
||
196 | uint32_t fftLen, |
||
197 | const q31_t * pCoef) |
||
198 | { |
||
199 | uint32_t i, l; |
||
200 | uint32_t n2, ia; |
||
201 | q31_t xt, yt, cosVal, sinVal; |
||
202 | q31_t p0, p1; |
||
203 | |||
204 | n2 = fftLen >> 1; |
||
205 | ia = 0; |
||
206 | for (i = 0; i < n2; i++) |
||
207 | { |
||
208 | cosVal = pCoef[2*ia]; |
||
209 | sinVal = pCoef[2*ia + 1]; |
||
210 | ia++; |
||
211 | |||
212 | l = i + n2; |
||
213 | xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2); |
||
214 | pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2); |
||
215 | |||
216 | yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2); |
||
217 | pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2); |
||
218 | |||
219 | mult_32x32_keep32_R(p0, xt, cosVal); |
||
220 | mult_32x32_keep32_R(p1, yt, cosVal); |
||
221 | multSub_32x32_keep32_R(p0, yt, sinVal); |
||
222 | multAcc_32x32_keep32_R(p1, xt, sinVal); |
||
223 | |||
224 | pSrc[2U * l] = p0 << 1; |
||
225 | pSrc[2U * l + 1U] = p1 << 1; |
||
226 | |||
227 | } |
||
228 | |||
229 | // first col |
||
230 | arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2U); |
||
231 | // second col |
||
232 | arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U); |
||
233 | |||
234 | for (i = 0; i < fftLen >> 1; i++) |
||
235 | { |
||
236 | p0 = pSrc[4*i+0]; |
||
237 | p1 = pSrc[4*i+1]; |
||
238 | xt = pSrc[4*i+2]; |
||
239 | yt = pSrc[4*i+3]; |
||
240 | |||
241 | p0 <<= 1; |
||
242 | p1 <<= 1; |
||
243 | xt <<= 1; |
||
244 | yt <<= 1; |
||
245 | |||
246 | pSrc[4*i+0] = p0; |
||
247 | pSrc[4*i+1] = p1; |
||
248 | pSrc[4*i+2] = xt; |
||
249 | pSrc[4*i+3] = yt; |
||
250 | } |
||
251 | } |
||
252 |