Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Project: CMSIS DSP Library |
||
3 | * Title: arm_cfft_f32.c |
||
4 | * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function |
||
5 | * |
||
6 | * $Date: 27. January 2017 |
||
7 | * $Revision: V.1.5.1 |
||
8 | * |
||
9 | * Target Processor: Cortex-M cores |
||
10 | * -------------------------------------------------------------------- */ |
||
11 | /* |
||
12 | * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. |
||
13 | * |
||
14 | * SPDX-License-Identifier: Apache-2.0 |
||
15 | * |
||
16 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
17 | * not use this file except in compliance with the License. |
||
18 | * You may obtain a copy of the License at |
||
19 | * |
||
20 | * www.apache.org/licenses/LICENSE-2.0 |
||
21 | * |
||
22 | * Unless required by applicable law or agreed to in writing, software |
||
23 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
24 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
25 | * See the License for the specific language governing permissions and |
||
26 | * limitations under the License. |
||
27 | */ |
||
28 | |||
29 | #include "arm_math.h" |
||
30 | #include "arm_common_tables.h" |
||
31 | |||
32 | extern void arm_radix8_butterfly_f32( |
||
33 | float32_t * pSrc, |
||
34 | uint16_t fftLen, |
||
35 | const float32_t * pCoef, |
||
36 | uint16_t twidCoefModifier); |
||
37 | |||
38 | extern void arm_bitreversal_32( |
||
39 | uint32_t * pSrc, |
||
40 | const uint16_t bitRevLen, |
||
41 | const uint16_t * pBitRevTable); |
||
42 | |||
43 | /** |
||
44 | * @ingroup groupTransforms |
||
45 | */ |
||
46 | |||
47 | /** |
||
48 | * @defgroup ComplexFFT Complex FFT Functions |
||
49 | * |
||
50 | * \par |
||
51 | * The Fast Fourier Transform (FFT) is an efficient algorithm for computing the |
||
52 | * Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster |
||
53 | * than the DFT, especially for long lengths. |
||
54 | * The algorithms described in this section |
||
55 | * operate on complex data. A separate set of functions is devoted to handling |
||
56 | * of real sequences. |
||
57 | * \par |
||
58 | * There are separate algorithms for handling floating-point, Q15, and Q31 data |
||
59 | * types. The algorithms available for each data type are described next. |
||
60 | * \par |
||
61 | * The FFT functions operate in-place. That is, the array holding the input data |
||
62 | * will also be used to hold the corresponding result. The input data is complex |
||
63 | * and contains <code>2*fftLen</code> interleaved values as shown below. |
||
64 | * <pre> {real[0], imag[0], real[1], imag[1],..} </pre> |
||
65 | * The FFT result will be contained in the same array and the frequency domain |
||
66 | * values will have the same interleaving. |
||
67 | * |
||
68 | * \par Floating-point |
||
69 | * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 |
||
70 | * stages are performed along with a single radix-2 or radix-4 stage, as needed. |
||
71 | * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses |
||
72 | * a different twiddle factor table. |
||
73 | * \par |
||
74 | * The function uses the standard FFT definition and output values may grow by a |
||
75 | * factor of <code>fftLen</code> when computing the forward transform. The |
||
76 | * inverse transform includes a scale of <code>1/fftLen</code> as part of the |
||
77 | * calculation and this matches the textbook definition of the inverse FFT. |
||
78 | * \par |
||
79 | * Pre-initialized data structures containing twiddle factors and bit reversal |
||
80 | * tables are provided and defined in <code>arm_const_structs.h</code>. Include |
||
81 | * this header in your function and then pass one of the constant structures as |
||
82 | * an argument to arm_cfft_f32. For example: |
||
83 | * \par |
||
84 | * <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code> |
||
85 | * \par |
||
86 | * computes a 64-point inverse complex FFT including bit reversal. |
||
87 | * The data structures are treated as constant data and not modified during the |
||
88 | * calculation. The same data structure can be reused for multiple transforms |
||
89 | * including mixing forward and inverse transforms. |
||
90 | * \par |
||
91 | * Earlier releases of the library provided separate radix-2 and radix-4 |
||
92 | * algorithms that operated on floating-point data. These functions are still |
||
93 | * provided but are deprecated. The older functions are slower and less general |
||
94 | * than the new functions. |
||
95 | * \par |
||
96 | * An example of initialization of the constants for the arm_cfft_f32 function follows: |
||
97 | * \code |
||
98 | * const static arm_cfft_instance_f32 *S; |
||
99 | * ... |
||
100 | * switch (length) { |
||
101 | * case 16: |
||
102 | * S = &arm_cfft_sR_f32_len16; |
||
103 | * break; |
||
104 | * case 32: |
||
105 | * S = &arm_cfft_sR_f32_len32; |
||
106 | * break; |
||
107 | * case 64: |
||
108 | * S = &arm_cfft_sR_f32_len64; |
||
109 | * break; |
||
110 | * case 128: |
||
111 | * S = &arm_cfft_sR_f32_len128; |
||
112 | * break; |
||
113 | * case 256: |
||
114 | * S = &arm_cfft_sR_f32_len256; |
||
115 | * break; |
||
116 | * case 512: |
||
117 | * S = &arm_cfft_sR_f32_len512; |
||
118 | * break; |
||
119 | * case 1024: |
||
120 | * S = &arm_cfft_sR_f32_len1024; |
||
121 | * break; |
||
122 | * case 2048: |
||
123 | * S = &arm_cfft_sR_f32_len2048; |
||
124 | * break; |
||
125 | * case 4096: |
||
126 | * S = &arm_cfft_sR_f32_len4096; |
||
127 | * break; |
||
128 | * } |
||
129 | * \endcode |
||
130 | * \par Q15 and Q31 |
||
131 | * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4 |
||
132 | * stages are performed along with a single radix-2 stage, as needed. |
||
133 | * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses |
||
134 | * a different twiddle factor table. |
||
135 | * \par |
||
136 | * The function uses the standard FFT definition and output values may grow by a |
||
137 | * factor of <code>fftLen</code> when computing the forward transform. The |
||
138 | * inverse transform includes a scale of <code>1/fftLen</code> as part of the |
||
139 | * calculation and this matches the textbook definition of the inverse FFT. |
||
140 | * \par |
||
141 | * Pre-initialized data structures containing twiddle factors and bit reversal |
||
142 | * tables are provided and defined in <code>arm_const_structs.h</code>. Include |
||
143 | * this header in your function and then pass one of the constant structures as |
||
144 | * an argument to arm_cfft_q31. For example: |
||
145 | * \par |
||
146 | * <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code> |
||
147 | * \par |
||
148 | * computes a 64-point inverse complex FFT including bit reversal. |
||
149 | * The data structures are treated as constant data and not modified during the |
||
150 | * calculation. The same data structure can be reused for multiple transforms |
||
151 | * including mixing forward and inverse transforms. |
||
152 | * \par |
||
153 | * Earlier releases of the library provided separate radix-2 and radix-4 |
||
154 | * algorithms that operated on floating-point data. These functions are still |
||
155 | * provided but are deprecated. The older functions are slower and less general |
||
156 | * than the new functions. |
||
157 | * \par |
||
158 | * An example of initialization of the constants for the arm_cfft_q31 function follows: |
||
159 | * \code |
||
160 | * const static arm_cfft_instance_q31 *S; |
||
161 | * ... |
||
162 | * switch (length) { |
||
163 | * case 16: |
||
164 | * S = &arm_cfft_sR_q31_len16; |
||
165 | * break; |
||
166 | * case 32: |
||
167 | * S = &arm_cfft_sR_q31_len32; |
||
168 | * break; |
||
169 | * case 64: |
||
170 | * S = &arm_cfft_sR_q31_len64; |
||
171 | * break; |
||
172 | * case 128: |
||
173 | * S = &arm_cfft_sR_q31_len128; |
||
174 | * break; |
||
175 | * case 256: |
||
176 | * S = &arm_cfft_sR_q31_len256; |
||
177 | * break; |
||
178 | * case 512: |
||
179 | * S = &arm_cfft_sR_q31_len512; |
||
180 | * break; |
||
181 | * case 1024: |
||
182 | * S = &arm_cfft_sR_q31_len1024; |
||
183 | * break; |
||
184 | * case 2048: |
||
185 | * S = &arm_cfft_sR_q31_len2048; |
||
186 | * break; |
||
187 | * case 4096: |
||
188 | * S = &arm_cfft_sR_q31_len4096; |
||
189 | * break; |
||
190 | * } |
||
191 | * \endcode |
||
192 | * |
||
193 | */ |
||
194 | |||
195 | void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1) |
||
196 | { |
||
197 | uint32_t L = S->fftLen; |
||
198 | float32_t * pCol1, * pCol2, * pMid1, * pMid2; |
||
199 | float32_t * p2 = p1 + L; |
||
200 | const float32_t * tw = (float32_t *) S->pTwiddle; |
||
201 | float32_t t1[4], t2[4], t3[4], t4[4], twR, twI; |
||
202 | float32_t m0, m1, m2, m3; |
||
203 | uint32_t l; |
||
204 | |||
205 | pCol1 = p1; |
||
206 | pCol2 = p2; |
||
207 | |||
208 | // Define new length |
||
209 | L >>= 1; |
||
210 | // Initialize mid pointers |
||
211 | pMid1 = p1 + L; |
||
212 | pMid2 = p2 + L; |
||
213 | |||
214 | // do two dot Fourier transform |
||
215 | for ( l = L >> 2; l > 0; l-- ) |
||
216 | { |
||
217 | t1[0] = p1[0]; |
||
218 | t1[1] = p1[1]; |
||
219 | t1[2] = p1[2]; |
||
220 | t1[3] = p1[3]; |
||
221 | |||
222 | t2[0] = p2[0]; |
||
223 | t2[1] = p2[1]; |
||
224 | t2[2] = p2[2]; |
||
225 | t2[3] = p2[3]; |
||
226 | |||
227 | t3[0] = pMid1[0]; |
||
228 | t3[1] = pMid1[1]; |
||
229 | t3[2] = pMid1[2]; |
||
230 | t3[3] = pMid1[3]; |
||
231 | |||
232 | t4[0] = pMid2[0]; |
||
233 | t4[1] = pMid2[1]; |
||
234 | t4[2] = pMid2[2]; |
||
235 | t4[3] = pMid2[3]; |
||
236 | |||
237 | *p1++ = t1[0] + t2[0]; |
||
238 | *p1++ = t1[1] + t2[1]; |
||
239 | *p1++ = t1[2] + t2[2]; |
||
240 | *p1++ = t1[3] + t2[3]; // col 1 |
||
241 | |||
242 | t2[0] = t1[0] - t2[0]; |
||
243 | t2[1] = t1[1] - t2[1]; |
||
244 | t2[2] = t1[2] - t2[2]; |
||
245 | t2[3] = t1[3] - t2[3]; // for col 2 |
||
246 | |||
247 | *pMid1++ = t3[0] + t4[0]; |
||
248 | *pMid1++ = t3[1] + t4[1]; |
||
249 | *pMid1++ = t3[2] + t4[2]; |
||
250 | *pMid1++ = t3[3] + t4[3]; // col 1 |
||
251 | |||
252 | t4[0] = t4[0] - t3[0]; |
||
253 | t4[1] = t4[1] - t3[1]; |
||
254 | t4[2] = t4[2] - t3[2]; |
||
255 | t4[3] = t4[3] - t3[3]; // for col 2 |
||
256 | |||
257 | twR = *tw++; |
||
258 | twI = *tw++; |
||
259 | |||
260 | // multiply by twiddle factors |
||
261 | m0 = t2[0] * twR; |
||
262 | m1 = t2[1] * twI; |
||
263 | m2 = t2[1] * twR; |
||
264 | m3 = t2[0] * twI; |
||
265 | |||
266 | // R = R * Tr - I * Ti |
||
267 | *p2++ = m0 + m1; |
||
268 | // I = I * Tr + R * Ti |
||
269 | *p2++ = m2 - m3; |
||
270 | |||
271 | // use vertical symmetry |
||
272 | // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i |
||
273 | m0 = t4[0] * twI; |
||
274 | m1 = t4[1] * twR; |
||
275 | m2 = t4[1] * twI; |
||
276 | m3 = t4[0] * twR; |
||
277 | |||
278 | *pMid2++ = m0 - m1; |
||
279 | *pMid2++ = m2 + m3; |
||
280 | |||
281 | twR = *tw++; |
||
282 | twI = *tw++; |
||
283 | |||
284 | m0 = t2[2] * twR; |
||
285 | m1 = t2[3] * twI; |
||
286 | m2 = t2[3] * twR; |
||
287 | m3 = t2[2] * twI; |
||
288 | |||
289 | *p2++ = m0 + m1; |
||
290 | *p2++ = m2 - m3; |
||
291 | |||
292 | m0 = t4[2] * twI; |
||
293 | m1 = t4[3] * twR; |
||
294 | m2 = t4[3] * twI; |
||
295 | m3 = t4[2] * twR; |
||
296 | |||
297 | *pMid2++ = m0 - m1; |
||
298 | *pMid2++ = m2 + m3; |
||
299 | } |
||
300 | |||
301 | // first col |
||
302 | arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2U); |
||
303 | // second col |
||
304 | arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2U); |
||
305 | } |
||
306 | |||
307 | void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1) |
||
308 | { |
||
309 | uint32_t L = S->fftLen >> 1; |
||
310 | float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4; |
||
311 | const float32_t *tw2, *tw3, *tw4; |
||
312 | float32_t * p2 = p1 + L; |
||
313 | float32_t * p3 = p2 + L; |
||
314 | float32_t * p4 = p3 + L; |
||
315 | float32_t t2[4], t3[4], t4[4], twR, twI; |
||
316 | float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1; |
||
317 | float32_t m0, m1, m2, m3; |
||
318 | uint32_t l, twMod2, twMod3, twMod4; |
||
319 | |||
320 | pCol1 = p1; // points to real values by default |
||
321 | pCol2 = p2; |
||
322 | pCol3 = p3; |
||
323 | pCol4 = p4; |
||
324 | pEnd1 = p2 - 1; // points to imaginary values by default |
||
325 | pEnd2 = p3 - 1; |
||
326 | pEnd3 = p4 - 1; |
||
327 | pEnd4 = pEnd3 + L; |
||
328 | |||
329 | tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle; |
||
330 | |||
331 | L >>= 1; |
||
332 | |||
333 | // do four dot Fourier transform |
||
334 | |||
335 | twMod2 = 2; |
||
336 | twMod3 = 4; |
||
337 | twMod4 = 6; |
||
338 | |||
339 | // TOP |
||
340 | p1ap3_0 = p1[0] + p3[0]; |
||
341 | p1sp3_0 = p1[0] - p3[0]; |
||
342 | p1ap3_1 = p1[1] + p3[1]; |
||
343 | p1sp3_1 = p1[1] - p3[1]; |
||
344 | |||
345 | // col 2 |
||
346 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
347 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
348 | // col 3 |
||
349 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
350 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
351 | // col 4 |
||
352 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
353 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
354 | // col 1 |
||
355 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
356 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
357 | |||
358 | // Twiddle factors are ones |
||
359 | *p2++ = t2[0]; |
||
360 | *p2++ = t2[1]; |
||
361 | *p3++ = t3[0]; |
||
362 | *p3++ = t3[1]; |
||
363 | *p4++ = t4[0]; |
||
364 | *p4++ = t4[1]; |
||
365 | |||
366 | tw2 += twMod2; |
||
367 | tw3 += twMod3; |
||
368 | tw4 += twMod4; |
||
369 | |||
370 | for (l = (L - 2) >> 1; l > 0; l-- ) |
||
371 | { |
||
372 | // TOP |
||
373 | p1ap3_0 = p1[0] + p3[0]; |
||
374 | p1sp3_0 = p1[0] - p3[0]; |
||
375 | p1ap3_1 = p1[1] + p3[1]; |
||
376 | p1sp3_1 = p1[1] - p3[1]; |
||
377 | // col 2 |
||
378 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
379 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
380 | // col 3 |
||
381 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
382 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
383 | // col 4 |
||
384 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
385 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
386 | // col 1 - top |
||
387 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
388 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
389 | |||
390 | // BOTTOM |
||
391 | p1ap3_1 = pEnd1[-1] + pEnd3[-1]; |
||
392 | p1sp3_1 = pEnd1[-1] - pEnd3[-1]; |
||
393 | p1ap3_0 = pEnd1[0] + pEnd3[0]; |
||
394 | p1sp3_0 = pEnd1[0] - pEnd3[0]; |
||
395 | // col 2 |
||
396 | t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1; |
||
397 | t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1]; |
||
398 | // col 3 |
||
399 | t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1]; |
||
400 | t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0]; |
||
401 | // col 4 |
||
402 | t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1; |
||
403 | t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0; |
||
404 | // col 1 - Bottom |
||
405 | *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0]; |
||
406 | *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1]; |
||
407 | |||
408 | // COL 2 |
||
409 | // read twiddle factors |
||
410 | twR = *tw2++; |
||
411 | twI = *tw2++; |
||
412 | // multiply by twiddle factors |
||
413 | // let Z1 = a + i(b), Z2 = c + i(d) |
||
414 | // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) |
||
415 | |||
416 | // Top |
||
417 | m0 = t2[0] * twR; |
||
418 | m1 = t2[1] * twI; |
||
419 | m2 = t2[1] * twR; |
||
420 | m3 = t2[0] * twI; |
||
421 | |||
422 | *p2++ = m0 + m1; |
||
423 | *p2++ = m2 - m3; |
||
424 | // use vertical symmetry col 2 |
||
425 | // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i |
||
426 | // Bottom |
||
427 | m0 = t2[3] * twI; |
||
428 | m1 = t2[2] * twR; |
||
429 | m2 = t2[2] * twI; |
||
430 | m3 = t2[3] * twR; |
||
431 | |||
432 | *pEnd2-- = m0 - m1; |
||
433 | *pEnd2-- = m2 + m3; |
||
434 | |||
435 | // COL 3 |
||
436 | twR = tw3[0]; |
||
437 | twI = tw3[1]; |
||
438 | tw3 += twMod3; |
||
439 | // Top |
||
440 | m0 = t3[0] * twR; |
||
441 | m1 = t3[1] * twI; |
||
442 | m2 = t3[1] * twR; |
||
443 | m3 = t3[0] * twI; |
||
444 | |||
445 | *p3++ = m0 + m1; |
||
446 | *p3++ = m2 - m3; |
||
447 | // use vertical symmetry col 3 |
||
448 | // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i |
||
449 | // Bottom |
||
450 | m0 = -t3[3] * twR; |
||
451 | m1 = t3[2] * twI; |
||
452 | m2 = t3[2] * twR; |
||
453 | m3 = t3[3] * twI; |
||
454 | |||
455 | *pEnd3-- = m0 - m1; |
||
456 | *pEnd3-- = m3 - m2; |
||
457 | |||
458 | // COL 4 |
||
459 | twR = tw4[0]; |
||
460 | twI = tw4[1]; |
||
461 | tw4 += twMod4; |
||
462 | // Top |
||
463 | m0 = t4[0] * twR; |
||
464 | m1 = t4[1] * twI; |
||
465 | m2 = t4[1] * twR; |
||
466 | m3 = t4[0] * twI; |
||
467 | |||
468 | *p4++ = m0 + m1; |
||
469 | *p4++ = m2 - m3; |
||
470 | // use vertical symmetry col 4 |
||
471 | // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i |
||
472 | // Bottom |
||
473 | m0 = t4[3] * twI; |
||
474 | m1 = t4[2] * twR; |
||
475 | m2 = t4[2] * twI; |
||
476 | m3 = t4[3] * twR; |
||
477 | |||
478 | *pEnd4-- = m0 - m1; |
||
479 | *pEnd4-- = m2 + m3; |
||
480 | } |
||
481 | |||
482 | //MIDDLE |
||
483 | // Twiddle factors are |
||
484 | // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i |
||
485 | p1ap3_0 = p1[0] + p3[0]; |
||
486 | p1sp3_0 = p1[0] - p3[0]; |
||
487 | p1ap3_1 = p1[1] + p3[1]; |
||
488 | p1sp3_1 = p1[1] - p3[1]; |
||
489 | |||
490 | // col 2 |
||
491 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
492 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
493 | // col 3 |
||
494 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
495 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
496 | // col 4 |
||
497 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
498 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
499 | // col 1 - Top |
||
500 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
501 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
502 | |||
503 | // COL 2 |
||
504 | twR = tw2[0]; |
||
505 | twI = tw2[1]; |
||
506 | |||
507 | m0 = t2[0] * twR; |
||
508 | m1 = t2[1] * twI; |
||
509 | m2 = t2[1] * twR; |
||
510 | m3 = t2[0] * twI; |
||
511 | |||
512 | *p2++ = m0 + m1; |
||
513 | *p2++ = m2 - m3; |
||
514 | // COL 3 |
||
515 | twR = tw3[0]; |
||
516 | twI = tw3[1]; |
||
517 | |||
518 | m0 = t3[0] * twR; |
||
519 | m1 = t3[1] * twI; |
||
520 | m2 = t3[1] * twR; |
||
521 | m3 = t3[0] * twI; |
||
522 | |||
523 | *p3++ = m0 + m1; |
||
524 | *p3++ = m2 - m3; |
||
525 | // COL 4 |
||
526 | twR = tw4[0]; |
||
527 | twI = tw4[1]; |
||
528 | |||
529 | m0 = t4[0] * twR; |
||
530 | m1 = t4[1] * twI; |
||
531 | m2 = t4[1] * twR; |
||
532 | m3 = t4[0] * twI; |
||
533 | |||
534 | *p4++ = m0 + m1; |
||
535 | *p4++ = m2 - m3; |
||
536 | |||
537 | // first col |
||
538 | arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4U); |
||
539 | // second col |
||
540 | arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4U); |
||
541 | // third col |
||
542 | arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4U); |
||
543 | // fourth col |
||
544 | arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4U); |
||
545 | } |
||
546 | |||
547 | /** |
||
548 | * @addtogroup ComplexFFT |
||
549 | * @{ |
||
550 | */ |
||
551 | |||
552 | /** |
||
553 | * @details |
||
554 | * @brief Processing function for the floating-point complex FFT. |
||
555 | * @param[in] *S points to an instance of the floating-point CFFT structure. |
||
556 | * @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. |
||
557 | * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. |
||
558 | * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. |
||
559 | * @return none. |
||
560 | */ |
||
561 | |||
562 | void arm_cfft_f32( |
||
563 | const arm_cfft_instance_f32 * S, |
||
564 | float32_t * p1, |
||
565 | uint8_t ifftFlag, |
||
566 | uint8_t bitReverseFlag) |
||
567 | { |
||
568 | uint32_t L = S->fftLen, l; |
||
569 | float32_t invL, * pSrc; |
||
570 | |||
571 | if (ifftFlag == 1U) |
||
572 | { |
||
573 | /* Conjugate input data */ |
||
574 | pSrc = p1 + 1; |
||
575 | for(l=0; l<L; l++) |
||
576 | { |
||
577 | *pSrc = -*pSrc; |
||
578 | pSrc += 2; |
||
579 | } |
||
580 | } |
||
581 | |||
582 | switch (L) |
||
583 | { |
||
584 | case 16: |
||
585 | case 128: |
||
586 | case 1024: |
||
587 | arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1); |
||
588 | break; |
||
589 | case 32: |
||
590 | case 256: |
||
591 | case 2048: |
||
592 | arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1); |
||
593 | break; |
||
594 | case 64: |
||
595 | case 512: |
||
596 | case 4096: |
||
597 | arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1); |
||
598 | break; |
||
599 | } |
||
600 | |||
601 | if ( bitReverseFlag ) |
||
602 | arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); |
||
603 | |||
604 | if (ifftFlag == 1U) |
||
605 | { |
||
606 | invL = 1.0f/(float32_t)L; |
||
607 | /* Conjugate and scale output data */ |
||
608 | pSrc = p1; |
||
609 | for(l=0; l<L; l++) |
||
610 | { |
||
611 | *pSrc++ *= invL ; |
||
612 | *pSrc = -(*pSrc) * invL; |
||
613 | pSrc++; |
||
614 | } |
||
615 | } |
||
616 | } |
||
617 | |||
618 | /** |
||
619 | * @} end of ComplexFFT group |
||
620 | */ |