Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Project: CMSIS DSP Library |
||
3 | * Title: arm_mat_mult_f32.c |
||
4 | * Description: Floating-point matrix multiplication |
||
5 | * |
||
6 | * $Date: 27. January 2017 |
||
7 | * $Revision: V.1.5.1 |
||
8 | * |
||
9 | * Target Processor: Cortex-M cores |
||
10 | * -------------------------------------------------------------------- */ |
||
11 | /* |
||
12 | * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. |
||
13 | * |
||
14 | * SPDX-License-Identifier: Apache-2.0 |
||
15 | * |
||
16 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
17 | * not use this file except in compliance with the License. |
||
18 | * You may obtain a copy of the License at |
||
19 | * |
||
20 | * www.apache.org/licenses/LICENSE-2.0 |
||
21 | * |
||
22 | * Unless required by applicable law or agreed to in writing, software |
||
23 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
24 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
25 | * See the License for the specific language governing permissions and |
||
26 | * limitations under the License. |
||
27 | */ |
||
28 | |||
29 | #include "arm_math.h" |
||
30 | |||
31 | /** |
||
32 | * @ingroup groupMatrix |
||
33 | */ |
||
34 | |||
35 | /** |
||
36 | * @defgroup MatrixMult Matrix Multiplication |
||
37 | * |
||
38 | * Multiplies two matrices. |
||
39 | * |
||
40 | * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices" |
||
41 | |||
42 | * Matrix multiplication is only defined if the number of columns of the |
||
43 | * first matrix equals the number of rows of the second matrix. |
||
44 | * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results |
||
45 | * in an <code>M x P</code> matrix. |
||
46 | * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of |
||
47 | * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output |
||
48 | * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>. |
||
49 | */ |
||
50 | |||
51 | |||
52 | /** |
||
53 | * @addtogroup MatrixMult |
||
54 | * @{ |
||
55 | */ |
||
56 | |||
57 | /** |
||
58 | * @brief Floating-point matrix multiplication. |
||
59 | * @param[in] *pSrcA points to the first input matrix structure |
||
60 | * @param[in] *pSrcB points to the second input matrix structure |
||
61 | * @param[out] *pDst points to output matrix structure |
||
62 | * @return The function returns either |
||
63 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
64 | */ |
||
65 | |||
66 | arm_status arm_mat_mult_f32( |
||
67 | const arm_matrix_instance_f32 * pSrcA, |
||
68 | const arm_matrix_instance_f32 * pSrcB, |
||
69 | arm_matrix_instance_f32 * pDst) |
||
70 | { |
||
71 | float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ |
||
72 | float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ |
||
73 | float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ |
||
74 | float32_t *pOut = pDst->pData; /* output data matrix pointer */ |
||
75 | float32_t *px; /* Temporary output data matrix pointer */ |
||
76 | float32_t sum; /* Accumulator */ |
||
77 | uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ |
||
78 | uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ |
||
79 | uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ |
||
80 | |||
81 | #if defined (ARM_MATH_DSP) |
||
82 | |||
83 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
84 | |||
85 | float32_t in1, in2, in3, in4; |
||
86 | uint16_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */ |
||
87 | arm_status status; /* status of matrix multiplication */ |
||
88 | |||
89 | #ifdef ARM_MATH_MATRIX_CHECK |
||
90 | |||
91 | |||
92 | /* Check for matrix mismatch condition */ |
||
93 | if ((pSrcA->numCols != pSrcB->numRows) || |
||
94 | (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) |
||
95 | { |
||
96 | |||
97 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
98 | status = ARM_MATH_SIZE_MISMATCH; |
||
99 | } |
||
100 | else |
||
101 | #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ |
||
102 | |||
103 | { |
||
104 | /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ |
||
105 | /* row loop */ |
||
106 | do |
||
107 | { |
||
108 | /* Output pointer is set to starting address of the row being processed */ |
||
109 | px = pOut + i; |
||
110 | |||
111 | /* For every row wise process, the column loop counter is to be initiated */ |
||
112 | col = numColsB; |
||
113 | |||
114 | /* For every row wise process, the pIn2 pointer is set |
||
115 | ** to the starting address of the pSrcB data */ |
||
116 | pIn2 = pSrcB->pData; |
||
117 | |||
118 | j = 0U; |
||
119 | |||
120 | /* column loop */ |
||
121 | do |
||
122 | { |
||
123 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
124 | sum = 0.0f; |
||
125 | |||
126 | /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ |
||
127 | pIn1 = pInA; |
||
128 | |||
129 | /* Apply loop unrolling and compute 4 MACs simultaneously. */ |
||
130 | colCnt = numColsA >> 2U; |
||
131 | |||
132 | /* matrix multiplication */ |
||
133 | while (colCnt > 0U) |
||
134 | { |
||
135 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
136 | in3 = *pIn2; |
||
137 | pIn2 += numColsB; |
||
138 | in1 = pIn1[0]; |
||
139 | in2 = pIn1[1]; |
||
140 | sum += in1 * in3; |
||
141 | in4 = *pIn2; |
||
142 | pIn2 += numColsB; |
||
143 | sum += in2 * in4; |
||
144 | |||
145 | in3 = *pIn2; |
||
146 | pIn2 += numColsB; |
||
147 | in1 = pIn1[2]; |
||
148 | in2 = pIn1[3]; |
||
149 | sum += in1 * in3; |
||
150 | in4 = *pIn2; |
||
151 | pIn2 += numColsB; |
||
152 | sum += in2 * in4; |
||
153 | pIn1 += 4U; |
||
154 | |||
155 | /* Decrement the loop count */ |
||
156 | colCnt--; |
||
157 | } |
||
158 | |||
159 | /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. |
||
160 | ** No loop unrolling is used. */ |
||
161 | colCnt = numColsA % 0x4U; |
||
162 | |||
163 | while (colCnt > 0U) |
||
164 | { |
||
165 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
166 | sum += *pIn1++ * (*pIn2); |
||
167 | pIn2 += numColsB; |
||
168 | |||
169 | /* Decrement the loop counter */ |
||
170 | colCnt--; |
||
171 | } |
||
172 | |||
173 | /* Store the result in the destination buffer */ |
||
174 | *px++ = sum; |
||
175 | |||
176 | /* Update the pointer pIn2 to point to the starting address of the next column */ |
||
177 | j++; |
||
178 | pIn2 = pSrcB->pData + j; |
||
179 | |||
180 | /* Decrement the column loop counter */ |
||
181 | col--; |
||
182 | |||
183 | } while (col > 0U); |
||
184 | |||
185 | #else |
||
186 | |||
187 | /* Run the below code for Cortex-M0 */ |
||
188 | |||
189 | float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ |
||
190 | uint16_t col, i = 0U, row = numRowsA, colCnt; /* loop counters */ |
||
191 | arm_status status; /* status of matrix multiplication */ |
||
192 | |||
193 | #ifdef ARM_MATH_MATRIX_CHECK |
||
194 | |||
195 | /* Check for matrix mismatch condition */ |
||
196 | if ((pSrcA->numCols != pSrcB->numRows) || |
||
197 | (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) |
||
198 | { |
||
199 | |||
200 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
201 | status = ARM_MATH_SIZE_MISMATCH; |
||
202 | } |
||
203 | else |
||
204 | #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ |
||
205 | |||
206 | { |
||
207 | /* The following loop performs the dot-product of each row in pInA with each column in pInB */ |
||
208 | /* row loop */ |
||
209 | do |
||
210 | { |
||
211 | /* Output pointer is set to starting address of the row being processed */ |
||
212 | px = pOut + i; |
||
213 | |||
214 | /* For every row wise process, the column loop counter is to be initiated */ |
||
215 | col = numColsB; |
||
216 | |||
217 | /* For every row wise process, the pIn2 pointer is set |
||
218 | ** to the starting address of the pSrcB data */ |
||
219 | pIn2 = pSrcB->pData; |
||
220 | |||
221 | /* column loop */ |
||
222 | do |
||
223 | { |
||
224 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
225 | sum = 0.0f; |
||
226 | |||
227 | /* Initialize the pointer pIn1 to point to the starting address of the row being processed */ |
||
228 | pIn1 = pInA; |
||
229 | |||
230 | /* Matrix A columns number of MAC operations are to be performed */ |
||
231 | colCnt = numColsA; |
||
232 | |||
233 | while (colCnt > 0U) |
||
234 | { |
||
235 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
236 | sum += *pIn1++ * (*pIn2); |
||
237 | pIn2 += numColsB; |
||
238 | |||
239 | /* Decrement the loop counter */ |
||
240 | colCnt--; |
||
241 | } |
||
242 | |||
243 | /* Store the result in the destination buffer */ |
||
244 | *px++ = sum; |
||
245 | |||
246 | /* Decrement the column loop counter */ |
||
247 | col--; |
||
248 | |||
249 | /* Update the pointer pIn2 to point to the starting address of the next column */ |
||
250 | pIn2 = pInB + (numColsB - col); |
||
251 | |||
252 | } while (col > 0U); |
||
253 | |||
254 | #endif /* #if defined (ARM_MATH_DSP) */ |
||
255 | |||
256 | /* Update the pointer pInA to point to the starting address of the next row */ |
||
257 | i = i + numColsB; |
||
258 | pInA = pInA + numColsA; |
||
259 | |||
260 | /* Decrement the row loop counter */ |
||
261 | row--; |
||
262 | |||
263 | } while (row > 0U); |
||
264 | /* Set status as ARM_MATH_SUCCESS */ |
||
265 | status = ARM_MATH_SUCCESS; |
||
266 | } |
||
267 | |||
268 | /* Return to application */ |
||
269 | return (status); |
||
270 | } |
||
271 | |||
272 | /** |
||
273 | * @} end of MatrixMult group |
||
274 | */ |