Subversion Repositories dashGPS

Rev

Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------
2
 * Project:      CMSIS DSP Library
3
 * Title:        arm_mat_cmplx_mult_q31.c
4
 * Description:  Floating-point matrix multiplication
5
 *
6
 * $Date:        27. January 2017
7
 * $Revision:    V.1.5.1
8
 *
9
 * Target Processor: Cortex-M cores
10
 * -------------------------------------------------------------------- */
11
/*
12
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
13
 *
14
 * SPDX-License-Identifier: Apache-2.0
15
 *
16
 * Licensed under the Apache License, Version 2.0 (the License); you may
17
 * not use this file except in compliance with the License.
18
 * You may obtain a copy of the License at
19
 *
20
 * www.apache.org/licenses/LICENSE-2.0
21
 *
22
 * Unless required by applicable law or agreed to in writing, software
23
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
 * See the License for the specific language governing permissions and
26
 * limitations under the License.
27
 */
28
 
29
#include "arm_math.h"
30
 
31
/**
32
 * @ingroup groupMatrix
33
 */
34
 
35
/**
36
 * @addtogroup CmplxMatrixMult
37
 * @{
38
 */
39
 
40
/**
41
 * @brief Q31 Complex matrix multiplication
42
 * @param[in]       *pSrcA points to the first input complex matrix structure
43
 * @param[in]       *pSrcB points to the second input complex matrix structure
44
 * @param[out]      *pDst points to output complex matrix structure
45
 * @return              The function returns either
46
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
47
 *
48
 * @details
49
 * <b>Scaling and Overflow Behavior:</b>
50
 *
51
 * \par
52
 * The function is implemented using an internal 64-bit accumulator.
53
 * The accumulator has a 2.62 format and maintains full precision of the intermediate
54
 * multiplication results but provides only a single guard bit. There is no saturation
55
 * on intermediate additions. Thus, if the accumulator overflows it wraps around and
56
 * distorts the result. The input signals should be scaled down to avoid intermediate
57
 * overflows. The input is thus scaled down by log2(numColsA) bits
58
 * to avoid overflows, as a total of numColsA additions are performed internally.
59
 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
60
 *
61
 *
62
 */
63
 
64
arm_status arm_mat_cmplx_mult_q31(
65
  const arm_matrix_instance_q31 * pSrcA,
66
  const arm_matrix_instance_q31 * pSrcB,
67
  arm_matrix_instance_q31 * pDst)
68
{
69
  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
70
  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
71
  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A  */
72
  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
73
  q31_t *px;                                     /* Temporary output data matrix pointer */
74
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A */
75
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
76
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
77
  q63_t sumReal1, sumImag1;                      /* accumulator */
78
  q31_t a0, b0, c0, d0;
79
  q31_t a1, b1, c1, d1;
80
 
81
 
82
  /* Run the below code for Cortex-M4 and Cortex-M3 */
83
 
84
  uint16_t col, i = 0U, j, row = numRowsA, colCnt;      /* loop counters */
85
  arm_status status;                             /* status of matrix multiplication */
86
 
87
#ifdef ARM_MATH_MATRIX_CHECK
88
 
89
 
90
  /* Check for matrix mismatch condition */
91
  if ((pSrcA->numCols != pSrcB->numRows) ||
92
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
93
  {
94
 
95
    /* Set status as ARM_MATH_SIZE_MISMATCH */
96
    status = ARM_MATH_SIZE_MISMATCH;
97
  }
98
  else
99
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
100
 
101
  {
102
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
103
    /* row loop */
104
    do
105
    {
106
      /* Output pointer is set to starting address of the row being processed */
107
      px = pOut + 2 * i;
108
 
109
      /* For every row wise process, the column loop counter is to be initiated */
110
      col = numColsB;
111
 
112
      /* For every row wise process, the pIn2 pointer is set
113
       ** to the starting address of the pSrcB data */
114
      pIn2 = pSrcB->pData;
115
 
116
      j = 0U;
117
 
118
      /* column loop */
119
      do
120
      {
121
        /* Set the variable sum, that acts as accumulator, to zero */
122
        sumReal1 = 0.0;
123
        sumImag1 = 0.0;
124
 
125
        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
126
        pIn1 = pInA;
127
 
128
        /* Apply loop unrolling and compute 4 MACs simultaneously. */
129
        colCnt = numColsA >> 2;
130
 
131
        /* matrix multiplication        */
132
        while (colCnt > 0U)
133
        {
134
 
135
          /* Reading real part of complex matrix A */
136
          a0 = *pIn1;
137
 
138
          /* Reading real part of complex matrix B */
139
          c0 = *pIn2;
140
 
141
          /* Reading imaginary part of complex matrix A */
142
          b0 = *(pIn1 + 1U);
143
 
144
          /* Reading imaginary part of complex matrix B */
145
          d0 = *(pIn2 + 1U);
146
 
147
          /* Multiply and Accumlates */
148
          sumReal1 += (q63_t) a0 *c0;
149
          sumImag1 += (q63_t) b0 *c0;
150
 
151
          /* update pointers */
152
          pIn1 += 2U;
153
          pIn2 += 2 * numColsB;
154
 
155
          /* Multiply and Accumlates */
156
          sumReal1 -= (q63_t) b0 *d0;
157
          sumImag1 += (q63_t) a0 *d0;
158
 
159
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
160
 
161
          /* read real and imag values from pSrcA and pSrcB buffer */
162
          a1 = *pIn1;
163
          c1 = *pIn2;
164
          b1 = *(pIn1 + 1U);
165
          d1 = *(pIn2 + 1U);
166
 
167
          /* Multiply and Accumlates */
168
          sumReal1 += (q63_t) a1 *c1;
169
          sumImag1 += (q63_t) b1 *c1;
170
 
171
          /* update pointers */
172
          pIn1 += 2U;
173
          pIn2 += 2 * numColsB;
174
 
175
          /* Multiply and Accumlates */
176
          sumReal1 -= (q63_t) b1 *d1;
177
          sumImag1 += (q63_t) a1 *d1;
178
 
179
          a0 = *pIn1;
180
          c0 = *pIn2;
181
 
182
          b0 = *(pIn1 + 1U);
183
          d0 = *(pIn2 + 1U);
184
 
185
          /* Multiply and Accumlates */
186
          sumReal1 += (q63_t) a0 *c0;
187
          sumImag1 += (q63_t) b0 *c0;
188
 
189
          /* update pointers */
190
          pIn1 += 2U;
191
          pIn2 += 2 * numColsB;
192
 
193
          /* Multiply and Accumlates */
194
          sumReal1 -= (q63_t) b0 *d0;
195
          sumImag1 += (q63_t) a0 *d0;
196
 
197
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
198
 
199
          a1 = *pIn1;
200
          c1 = *pIn2;
201
 
202
          b1 = *(pIn1 + 1U);
203
          d1 = *(pIn2 + 1U);
204
 
205
          /* Multiply and Accumlates */
206
          sumReal1 += (q63_t) a1 *c1;
207
          sumImag1 += (q63_t) b1 *c1;
208
 
209
          /* update pointers */
210
          pIn1 += 2U;
211
          pIn2 += 2 * numColsB;
212
 
213
          /* Multiply and Accumlates */
214
          sumReal1 -= (q63_t) b1 *d1;
215
          sumImag1 += (q63_t) a1 *d1;
216
 
217
          /* Decrement the loop count */
218
          colCnt--;
219
        }
220
 
221
        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
222
         ** No loop unrolling is used. */
223
        colCnt = numColsA % 0x4U;
224
 
225
        while (colCnt > 0U)
226
        {
227
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
228
          a1 = *pIn1;
229
          c1 = *pIn2;
230
 
231
          b1 = *(pIn1 + 1U);
232
          d1 = *(pIn2 + 1U);
233
 
234
          /* Multiply and Accumlates */
235
          sumReal1 += (q63_t) a1 *c1;
236
          sumImag1 += (q63_t) b1 *c1;
237
 
238
          /* update pointers */
239
          pIn1 += 2U;
240
          pIn2 += 2 * numColsB;
241
 
242
          /* Multiply and Accumlates */
243
          sumReal1 -= (q63_t) b1 *d1;
244
          sumImag1 += (q63_t) a1 *d1;
245
 
246
          /* Decrement the loop counter */
247
          colCnt--;
248
        }
249
 
250
        /* Store the result in the destination buffer */
251
        *px++ = (q31_t) clip_q63_to_q31(sumReal1 >> 31);
252
        *px++ = (q31_t) clip_q63_to_q31(sumImag1 >> 31);
253
 
254
        /* Update the pointer pIn2 to point to the  starting address of the next column */
255
        j++;
256
        pIn2 = pSrcB->pData + 2U * j;
257
 
258
        /* Decrement the column loop counter */
259
        col--;
260
 
261
      } while (col > 0U);
262
 
263
      /* Update the pointer pInA to point to the  starting address of the next row */
264
      i = i + numColsB;
265
      pInA = pInA + 2 * numColsA;
266
 
267
      /* Decrement the row loop counter */
268
      row--;
269
 
270
    } while (row > 0U);
271
 
272
    /* Set status as ARM_MATH_SUCCESS */
273
    status = ARM_MATH_SUCCESS;
274
  }
275
 
276
  /* Return to application */
277
  return (status);
278
}
279
 
280
/**
281
 * @} end of MatrixMult group
282
 */