Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Project: CMSIS DSP Library |
||
3 | * Title: arm_mat_cmplx_mult_f32.c |
||
4 | * Description: Floating-point matrix multiplication |
||
5 | * |
||
6 | * $Date: 27. January 2017 |
||
7 | * $Revision: V.1.5.1 |
||
8 | * |
||
9 | * Target Processor: Cortex-M cores |
||
10 | * -------------------------------------------------------------------- */ |
||
11 | /* |
||
12 | * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. |
||
13 | * |
||
14 | * SPDX-License-Identifier: Apache-2.0 |
||
15 | * |
||
16 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
17 | * not use this file except in compliance with the License. |
||
18 | * You may obtain a copy of the License at |
||
19 | * |
||
20 | * www.apache.org/licenses/LICENSE-2.0 |
||
21 | * |
||
22 | * Unless required by applicable law or agreed to in writing, software |
||
23 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
24 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
25 | * See the License for the specific language governing permissions and |
||
26 | * limitations under the License. |
||
27 | */ |
||
28 | |||
29 | #include "arm_math.h" |
||
30 | |||
31 | /** |
||
32 | * @ingroup groupMatrix |
||
33 | */ |
||
34 | |||
35 | /** |
||
36 | * @defgroup CmplxMatrixMult Complex Matrix Multiplication |
||
37 | * |
||
38 | * Complex Matrix multiplication is only defined if the number of columns of the |
||
39 | * first matrix equals the number of rows of the second matrix. |
||
40 | * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results |
||
41 | * in an <code>M x P</code> matrix. |
||
42 | * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of |
||
43 | * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output |
||
44 | * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>. |
||
45 | */ |
||
46 | |||
47 | |||
48 | /** |
||
49 | * @addtogroup CmplxMatrixMult |
||
50 | * @{ |
||
51 | */ |
||
52 | |||
53 | /** |
||
54 | * @brief Floating-point Complex matrix multiplication. |
||
55 | * @param[in] *pSrcA points to the first input complex matrix structure |
||
56 | * @param[in] *pSrcB points to the second input complex matrix structure |
||
57 | * @param[out] *pDst points to output complex matrix structure |
||
58 | * @return The function returns either |
||
59 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
60 | */ |
||
61 | |||
62 | arm_status arm_mat_cmplx_mult_f32( |
||
63 | const arm_matrix_instance_f32 * pSrcA, |
||
64 | const arm_matrix_instance_f32 * pSrcB, |
||
65 | arm_matrix_instance_f32 * pDst) |
||
66 | { |
||
67 | float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ |
||
68 | float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ |
||
69 | float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ |
||
70 | float32_t *pOut = pDst->pData; /* output data matrix pointer */ |
||
71 | float32_t *px; /* Temporary output data matrix pointer */ |
||
72 | uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ |
||
73 | uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ |
||
74 | uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ |
||
75 | float32_t sumReal1, sumImag1; /* accumulator */ |
||
76 | float32_t a0, b0, c0, d0; |
||
77 | float32_t a1, b1, c1, d1; |
||
78 | float32_t sumReal2, sumImag2; /* accumulator */ |
||
79 | |||
80 | |||
81 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
82 | |||
83 | uint16_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */ |
||
84 | arm_status status; /* status of matrix multiplication */ |
||
85 | |||
86 | #ifdef ARM_MATH_MATRIX_CHECK |
||
87 | |||
88 | |||
89 | /* Check for matrix mismatch condition */ |
||
90 | if ((pSrcA->numCols != pSrcB->numRows) || |
||
91 | (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) |
||
92 | { |
||
93 | |||
94 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
95 | status = ARM_MATH_SIZE_MISMATCH; |
||
96 | } |
||
97 | else |
||
98 | #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ |
||
99 | |||
100 | { |
||
101 | /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ |
||
102 | /* row loop */ |
||
103 | do |
||
104 | { |
||
105 | /* Output pointer is set to starting address of the row being processed */ |
||
106 | px = pOut + 2 * i; |
||
107 | |||
108 | /* For every row wise process, the column loop counter is to be initiated */ |
||
109 | col = numColsB; |
||
110 | |||
111 | /* For every row wise process, the pIn2 pointer is set |
||
112 | ** to the starting address of the pSrcB data */ |
||
113 | pIn2 = pSrcB->pData; |
||
114 | |||
115 | j = 0U; |
||
116 | |||
117 | /* column loop */ |
||
118 | do |
||
119 | { |
||
120 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
121 | sumReal1 = 0.0f; |
||
122 | sumImag1 = 0.0f; |
||
123 | |||
124 | sumReal2 = 0.0f; |
||
125 | sumImag2 = 0.0f; |
||
126 | |||
127 | /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ |
||
128 | pIn1 = pInA; |
||
129 | |||
130 | /* Apply loop unrolling and compute 4 MACs simultaneously. */ |
||
131 | colCnt = numColsA >> 2; |
||
132 | |||
133 | /* matrix multiplication */ |
||
134 | while (colCnt > 0U) |
||
135 | { |
||
136 | |||
137 | /* Reading real part of complex matrix A */ |
||
138 | a0 = *pIn1; |
||
139 | |||
140 | /* Reading real part of complex matrix B */ |
||
141 | c0 = *pIn2; |
||
142 | |||
143 | /* Reading imaginary part of complex matrix A */ |
||
144 | b0 = *(pIn1 + 1U); |
||
145 | |||
146 | /* Reading imaginary part of complex matrix B */ |
||
147 | d0 = *(pIn2 + 1U); |
||
148 | |||
149 | sumReal1 += a0 * c0; |
||
150 | sumImag1 += b0 * c0; |
||
151 | |||
152 | pIn1 += 2U; |
||
153 | pIn2 += 2 * numColsB; |
||
154 | |||
155 | sumReal2 -= b0 * d0; |
||
156 | sumImag2 += a0 * d0; |
||
157 | |||
158 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
159 | |||
160 | a1 = *pIn1; |
||
161 | c1 = *pIn2; |
||
162 | |||
163 | b1 = *(pIn1 + 1U); |
||
164 | d1 = *(pIn2 + 1U); |
||
165 | |||
166 | sumReal1 += a1 * c1; |
||
167 | sumImag1 += b1 * c1; |
||
168 | |||
169 | pIn1 += 2U; |
||
170 | pIn2 += 2 * numColsB; |
||
171 | |||
172 | sumReal2 -= b1 * d1; |
||
173 | sumImag2 += a1 * d1; |
||
174 | |||
175 | a0 = *pIn1; |
||
176 | c0 = *pIn2; |
||
177 | |||
178 | b0 = *(pIn1 + 1U); |
||
179 | d0 = *(pIn2 + 1U); |
||
180 | |||
181 | sumReal1 += a0 * c0; |
||
182 | sumImag1 += b0 * c0; |
||
183 | |||
184 | pIn1 += 2U; |
||
185 | pIn2 += 2 * numColsB; |
||
186 | |||
187 | sumReal2 -= b0 * d0; |
||
188 | sumImag2 += a0 * d0; |
||
189 | |||
190 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
191 | |||
192 | a1 = *pIn1; |
||
193 | c1 = *pIn2; |
||
194 | |||
195 | b1 = *(pIn1 + 1U); |
||
196 | d1 = *(pIn2 + 1U); |
||
197 | |||
198 | sumReal1 += a1 * c1; |
||
199 | sumImag1 += b1 * c1; |
||
200 | |||
201 | pIn1 += 2U; |
||
202 | pIn2 += 2 * numColsB; |
||
203 | |||
204 | sumReal2 -= b1 * d1; |
||
205 | sumImag2 += a1 * d1; |
||
206 | |||
207 | /* Decrement the loop count */ |
||
208 | colCnt--; |
||
209 | } |
||
210 | |||
211 | /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. |
||
212 | ** No loop unrolling is used. */ |
||
213 | colCnt = numColsA % 0x4U; |
||
214 | |||
215 | while (colCnt > 0U) |
||
216 | { |
||
217 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
218 | a1 = *pIn1; |
||
219 | c1 = *pIn2; |
||
220 | |||
221 | b1 = *(pIn1 + 1U); |
||
222 | d1 = *(pIn2 + 1U); |
||
223 | |||
224 | sumReal1 += a1 * c1; |
||
225 | sumImag1 += b1 * c1; |
||
226 | |||
227 | pIn1 += 2U; |
||
228 | pIn2 += 2 * numColsB; |
||
229 | |||
230 | sumReal2 -= b1 * d1; |
||
231 | sumImag2 += a1 * d1; |
||
232 | |||
233 | /* Decrement the loop counter */ |
||
234 | colCnt--; |
||
235 | } |
||
236 | |||
237 | sumReal1 += sumReal2; |
||
238 | sumImag1 += sumImag2; |
||
239 | |||
240 | /* Store the result in the destination buffer */ |
||
241 | *px++ = sumReal1; |
||
242 | *px++ = sumImag1; |
||
243 | |||
244 | /* Update the pointer pIn2 to point to the starting address of the next column */ |
||
245 | j++; |
||
246 | pIn2 = pSrcB->pData + 2U * j; |
||
247 | |||
248 | /* Decrement the column loop counter */ |
||
249 | col--; |
||
250 | |||
251 | } while (col > 0U); |
||
252 | |||
253 | /* Update the pointer pInA to point to the starting address of the next row */ |
||
254 | i = i + numColsB; |
||
255 | pInA = pInA + 2 * numColsA; |
||
256 | |||
257 | /* Decrement the row loop counter */ |
||
258 | row--; |
||
259 | |||
260 | } while (row > 0U); |
||
261 | |||
262 | /* Set status as ARM_MATH_SUCCESS */ |
||
263 | status = ARM_MATH_SUCCESS; |
||
264 | } |
||
265 | |||
266 | /* Return to application */ |
||
267 | return (status); |
||
268 | } |
||
269 | |||
270 | /** |
||
271 | * @} end of MatrixMult group |
||
272 | */ |