Subversion Repositories dashGPS

Rev

Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**************************************************************************//**
2
 * @file     cmsis_armclang.h
3
 * @brief    CMSIS compiler armclang (Arm Compiler 6) header file
4
 * @version  V5.0.4
5
 * @date     10. January 2018
6
 ******************************************************************************/
7
/*
8
 * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
9
 *
10
 * SPDX-License-Identifier: Apache-2.0
11
 *
12
 * Licensed under the Apache License, Version 2.0 (the License); you may
13
 * not use this file except in compliance with the License.
14
 * You may obtain a copy of the License at
15
 *
16
 * www.apache.org/licenses/LICENSE-2.0
17
 *
18
 * Unless required by applicable law or agreed to in writing, software
19
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21
 * See the License for the specific language governing permissions and
22
 * limitations under the License.
23
 */
24
 
25
/*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26
 
27
#ifndef __CMSIS_ARMCLANG_H
28
#define __CMSIS_ARMCLANG_H
29
 
30
#pragma clang system_header   /* treat file as system include file */
31
 
32
#ifndef __ARM_COMPAT_H
33
#include <arm_compat.h>    /* Compatibility header for Arm Compiler 5 intrinsics */
34
#endif
35
 
36
/* CMSIS compiler specific defines */
37
#ifndef   __ASM
38
  #define __ASM                                  __asm
39
#endif
40
#ifndef   __INLINE
41
  #define __INLINE                               __inline
42
#endif
43
#ifndef   __STATIC_INLINE
44
  #define __STATIC_INLINE                        static __inline
45
#endif
46
#ifndef   __STATIC_FORCEINLINE                 
47
  #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static __inline
48
#endif                                           
49
#ifndef   __NO_RETURN
50
  #define __NO_RETURN                            __attribute__((__noreturn__))
51
#endif
52
#ifndef   __USED
53
  #define __USED                                 __attribute__((used))
54
#endif
55
#ifndef   __WEAK
56
  #define __WEAK                                 __attribute__((weak))
57
#endif
58
#ifndef   __PACKED
59
  #define __PACKED                               __attribute__((packed, aligned(1)))
60
#endif
61
#ifndef   __PACKED_STRUCT
62
  #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
63
#endif
64
#ifndef   __PACKED_UNION
65
  #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
66
#endif
67
#ifndef   __UNALIGNED_UINT32        /* deprecated */
68
  #pragma clang diagnostic push
69
  #pragma clang diagnostic ignored "-Wpacked"
70
/*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
71
  struct __attribute__((packed)) T_UINT32 { uint32_t v; };
72
  #pragma clang diagnostic pop
73
  #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
74
#endif
75
#ifndef   __UNALIGNED_UINT16_WRITE
76
  #pragma clang diagnostic push
77
  #pragma clang diagnostic ignored "-Wpacked"
78
/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
79
  __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
80
  #pragma clang diagnostic pop
81
  #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
82
#endif
83
#ifndef   __UNALIGNED_UINT16_READ
84
  #pragma clang diagnostic push
85
  #pragma clang diagnostic ignored "-Wpacked"
86
/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
87
  __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
88
  #pragma clang diagnostic pop
89
  #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
90
#endif
91
#ifndef   __UNALIGNED_UINT32_WRITE
92
  #pragma clang diagnostic push
93
  #pragma clang diagnostic ignored "-Wpacked"
94
/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
95
  __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
96
  #pragma clang diagnostic pop
97
  #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
98
#endif
99
#ifndef   __UNALIGNED_UINT32_READ
100
  #pragma clang diagnostic push
101
  #pragma clang diagnostic ignored "-Wpacked"
102
/*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
103
  __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
104
  #pragma clang diagnostic pop
105
  #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
106
#endif
107
#ifndef   __ALIGNED
108
  #define __ALIGNED(x)                           __attribute__((aligned(x)))
109
#endif
110
#ifndef   __RESTRICT
111
  #define __RESTRICT                             __restrict
112
#endif
113
 
114
 
115
/* ###########################  Core Function Access  ########################### */
116
/** \ingroup  CMSIS_Core_FunctionInterface
117
    \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
118
  @{
119
 */
120
 
121
/**
122
  \brief   Enable IRQ Interrupts
123
  \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
124
           Can only be executed in Privileged modes.
125
 */
126
/* intrinsic void __enable_irq();  see arm_compat.h */
127
 
128
 
129
/**
130
  \brief   Disable IRQ Interrupts
131
  \details Disables IRQ interrupts by setting the I-bit in the CPSR.
132
           Can only be executed in Privileged modes.
133
 */
134
/* intrinsic void __disable_irq();  see arm_compat.h */
135
 
136
 
137
/**
138
  \brief   Get Control Register
139
  \details Returns the content of the Control Register.
140
  \return               Control Register value
141
 */
142
__STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
143
{
144
  uint32_t result;
145
 
146
  __ASM volatile ("MRS %0, control" : "=r" (result) );
147
  return(result);
148
}
149
 
150
 
151
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
152
/**
153
  \brief   Get Control Register (non-secure)
154
  \details Returns the content of the non-secure Control Register when in secure mode.
155
  \return               non-secure Control Register value
156
 */
157
__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
158
{
159
  uint32_t result;
160
 
161
  __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
162
  return(result);
163
}
164
#endif
165
 
166
 
167
/**
168
  \brief   Set Control Register
169
  \details Writes the given value to the Control Register.
170
  \param [in]    control  Control Register value to set
171
 */
172
__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
173
{
174
  __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
175
}
176
 
177
 
178
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
179
/**
180
  \brief   Set Control Register (non-secure)
181
  \details Writes the given value to the non-secure Control Register when in secure state.
182
  \param [in]    control  Control Register value to set
183
 */
184
__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
185
{
186
  __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
187
}
188
#endif
189
 
190
 
191
/**
192
  \brief   Get IPSR Register
193
  \details Returns the content of the IPSR Register.
194
  \return               IPSR Register value
195
 */
196
__STATIC_FORCEINLINE uint32_t __get_IPSR(void)
197
{
198
  uint32_t result;
199
 
200
  __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
201
  return(result);
202
}
203
 
204
 
205
/**
206
  \brief   Get APSR Register
207
  \details Returns the content of the APSR Register.
208
  \return               APSR Register value
209
 */
210
__STATIC_FORCEINLINE uint32_t __get_APSR(void)
211
{
212
  uint32_t result;
213
 
214
  __ASM volatile ("MRS %0, apsr" : "=r" (result) );
215
  return(result);
216
}
217
 
218
 
219
/**
220
  \brief   Get xPSR Register
221
  \details Returns the content of the xPSR Register.
222
  \return               xPSR Register value
223
 */
224
__STATIC_FORCEINLINE uint32_t __get_xPSR(void)
225
{
226
  uint32_t result;
227
 
228
  __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
229
  return(result);
230
}
231
 
232
 
233
/**
234
  \brief   Get Process Stack Pointer
235
  \details Returns the current value of the Process Stack Pointer (PSP).
236
  \return               PSP Register value
237
 */
238
__STATIC_FORCEINLINE uint32_t __get_PSP(void)
239
{
240
  uint32_t result;
241
 
242
  __ASM volatile ("MRS %0, psp"  : "=r" (result) );
243
  return(result);
244
}
245
 
246
 
247
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
248
/**
249
  \brief   Get Process Stack Pointer (non-secure)
250
  \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
251
  \return               PSP Register value
252
 */
253
__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
254
{
255
  uint32_t result;
256
 
257
  __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
258
  return(result);
259
}
260
#endif
261
 
262
 
263
/**
264
  \brief   Set Process Stack Pointer
265
  \details Assigns the given value to the Process Stack Pointer (PSP).
266
  \param [in]    topOfProcStack  Process Stack Pointer value to set
267
 */
268
__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
269
{
270
  __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
271
}
272
 
273
 
274
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
275
/**
276
  \brief   Set Process Stack Pointer (non-secure)
277
  \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
278
  \param [in]    topOfProcStack  Process Stack Pointer value to set
279
 */
280
__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
281
{
282
  __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
283
}
284
#endif
285
 
286
 
287
/**
288
  \brief   Get Main Stack Pointer
289
  \details Returns the current value of the Main Stack Pointer (MSP).
290
  \return               MSP Register value
291
 */
292
__STATIC_FORCEINLINE uint32_t __get_MSP(void)
293
{
294
  uint32_t result;
295
 
296
  __ASM volatile ("MRS %0, msp" : "=r" (result) );
297
  return(result);
298
}
299
 
300
 
301
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
302
/**
303
  \brief   Get Main Stack Pointer (non-secure)
304
  \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
305
  \return               MSP Register value
306
 */
307
__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
308
{
309
  uint32_t result;
310
 
311
  __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
312
  return(result);
313
}
314
#endif
315
 
316
 
317
/**
318
  \brief   Set Main Stack Pointer
319
  \details Assigns the given value to the Main Stack Pointer (MSP).
320
  \param [in]    topOfMainStack  Main Stack Pointer value to set
321
 */
322
__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
323
{
324
  __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
325
}
326
 
327
 
328
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
329
/**
330
  \brief   Set Main Stack Pointer (non-secure)
331
  \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
332
  \param [in]    topOfMainStack  Main Stack Pointer value to set
333
 */
334
__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
335
{
336
  __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
337
}
338
#endif
339
 
340
 
341
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
342
/**
343
  \brief   Get Stack Pointer (non-secure)
344
  \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
345
  \return               SP Register value
346
 */
347
__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
348
{
349
  uint32_t result;
350
 
351
  __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
352
  return(result);
353
}
354
 
355
 
356
/**
357
  \brief   Set Stack Pointer (non-secure)
358
  \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
359
  \param [in]    topOfStack  Stack Pointer value to set
360
 */
361
__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
362
{
363
  __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
364
}
365
#endif
366
 
367
 
368
/**
369
  \brief   Get Priority Mask
370
  \details Returns the current state of the priority mask bit from the Priority Mask Register.
371
  \return               Priority Mask value
372
 */
373
__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
374
{
375
  uint32_t result;
376
 
377
  __ASM volatile ("MRS %0, primask" : "=r" (result) );
378
  return(result);
379
}
380
 
381
 
382
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
383
/**
384
  \brief   Get Priority Mask (non-secure)
385
  \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
386
  \return               Priority Mask value
387
 */
388
__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
389
{
390
  uint32_t result;
391
 
392
  __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
393
  return(result);
394
}
395
#endif
396
 
397
 
398
/**
399
  \brief   Set Priority Mask
400
  \details Assigns the given value to the Priority Mask Register.
401
  \param [in]    priMask  Priority Mask
402
 */
403
__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
404
{
405
  __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
406
}
407
 
408
 
409
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
410
/**
411
  \brief   Set Priority Mask (non-secure)
412
  \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
413
  \param [in]    priMask  Priority Mask
414
 */
415
__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
416
{
417
  __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
418
}
419
#endif
420
 
421
 
422
#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
423
     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
424
     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
425
/**
426
  \brief   Enable FIQ
427
  \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
428
           Can only be executed in Privileged modes.
429
 */
430
#define __enable_fault_irq                __enable_fiq   /* see arm_compat.h */
431
 
432
 
433
/**
434
  \brief   Disable FIQ
435
  \details Disables FIQ interrupts by setting the F-bit in the CPSR.
436
           Can only be executed in Privileged modes.
437
 */
438
#define __disable_fault_irq               __disable_fiq   /* see arm_compat.h */
439
 
440
 
441
/**
442
  \brief   Get Base Priority
443
  \details Returns the current value of the Base Priority register.
444
  \return               Base Priority register value
445
 */
446
__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
447
{
448
  uint32_t result;
449
 
450
  __ASM volatile ("MRS %0, basepri" : "=r" (result) );
451
  return(result);
452
}
453
 
454
 
455
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
456
/**
457
  \brief   Get Base Priority (non-secure)
458
  \details Returns the current value of the non-secure Base Priority register when in secure state.
459
  \return               Base Priority register value
460
 */
461
__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
462
{
463
  uint32_t result;
464
 
465
  __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
466
  return(result);
467
}
468
#endif
469
 
470
 
471
/**
472
  \brief   Set Base Priority
473
  \details Assigns the given value to the Base Priority register.
474
  \param [in]    basePri  Base Priority value to set
475
 */
476
__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
477
{
478
  __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
479
}
480
 
481
 
482
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
483
/**
484
  \brief   Set Base Priority (non-secure)
485
  \details Assigns the given value to the non-secure Base Priority register when in secure state.
486
  \param [in]    basePri  Base Priority value to set
487
 */
488
__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
489
{
490
  __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
491
}
492
#endif
493
 
494
 
495
/**
496
  \brief   Set Base Priority with condition
497
  \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
498
           or the new value increases the BASEPRI priority level.
499
  \param [in]    basePri  Base Priority value to set
500
 */
501
__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
502
{
503
  __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
504
}
505
 
506
 
507
/**
508
  \brief   Get Fault Mask
509
  \details Returns the current value of the Fault Mask register.
510
  \return               Fault Mask register value
511
 */
512
__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
513
{
514
  uint32_t result;
515
 
516
  __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
517
  return(result);
518
}
519
 
520
 
521
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
522
/**
523
  \brief   Get Fault Mask (non-secure)
524
  \details Returns the current value of the non-secure Fault Mask register when in secure state.
525
  \return               Fault Mask register value
526
 */
527
__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
528
{
529
  uint32_t result;
530
 
531
  __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
532
  return(result);
533
}
534
#endif
535
 
536
 
537
/**
538
  \brief   Set Fault Mask
539
  \details Assigns the given value to the Fault Mask register.
540
  \param [in]    faultMask  Fault Mask value to set
541
 */
542
__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
543
{
544
  __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
545
}
546
 
547
 
548
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
549
/**
550
  \brief   Set Fault Mask (non-secure)
551
  \details Assigns the given value to the non-secure Fault Mask register when in secure state.
552
  \param [in]    faultMask  Fault Mask value to set
553
 */
554
__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
555
{
556
  __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
557
}
558
#endif
559
 
560
#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
561
           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
562
           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
563
 
564
 
565
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
566
     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
567
 
568
/**
569
  \brief   Get Process Stack Pointer Limit
570
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
571
  Stack Pointer Limit register hence zero is returned always in non-secure
572
  mode.
573
 
574
  \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
575
  \return               PSPLIM Register value
576
 */
577
__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
578
{
579
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
580
    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
581
    // without main extensions, the non-secure PSPLIM is RAZ/WI
582
  return 0U;
583
#else
584
  uint32_t result;
585
  __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
586
  return result;
587
#endif
588
}
589
 
590
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
591
/**
592
  \brief   Get Process Stack Pointer Limit (non-secure)
593
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
594
  Stack Pointer Limit register hence zero is returned always in non-secure
595
  mode.
596
 
597
  \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
598
  \return               PSPLIM Register value
599
 */
600
__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
601
{
602
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
603
  // without main extensions, the non-secure PSPLIM is RAZ/WI
604
  return 0U;
605
#else
606
  uint32_t result;
607
  __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
608
  return result;
609
#endif
610
}
611
#endif
612
 
613
 
614
/**
615
  \brief   Set Process Stack Pointer Limit
616
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
617
  Stack Pointer Limit register hence the write is silently ignored in non-secure
618
  mode.
619
 
620
  \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
621
  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
622
 */
623
__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
624
{
625
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
626
    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
627
  // without main extensions, the non-secure PSPLIM is RAZ/WI
628
  (void)ProcStackPtrLimit;
629
#else
630
  __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
631
#endif
632
}
633
 
634
 
635
#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
636
/**
637
  \brief   Set Process Stack Pointer (non-secure)
638
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
639
  Stack Pointer Limit register hence the write is silently ignored in non-secure
640
  mode.
641
 
642
  \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
643
  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
644
 */
645
__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
646
{
647
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
648
  // without main extensions, the non-secure PSPLIM is RAZ/WI
649
  (void)ProcStackPtrLimit;
650
#else
651
  __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
652
#endif
653
}
654
#endif
655
 
656
 
657
/**
658
  \brief   Get Main Stack Pointer Limit
659
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
660
  Stack Pointer Limit register hence zero is returned always.
661
 
662
  \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
663
  \return               MSPLIM Register value
664
 */
665
__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
666
{
667
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
668
    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
669
  // without main extensions, the non-secure MSPLIM is RAZ/WI
670
  return 0U;
671
#else
672
  uint32_t result;
673
  __ASM volatile ("MRS %0, msplim" : "=r" (result) );
674
  return result;
675
#endif
676
}
677
 
678
 
679
#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
680
/**
681
  \brief   Get Main Stack Pointer Limit (non-secure)
682
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
683
  Stack Pointer Limit register hence zero is returned always.
684
 
685
  \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
686
  \return               MSPLIM Register value
687
 */
688
__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
689
{
690
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
691
  // without main extensions, the non-secure MSPLIM is RAZ/WI
692
  return 0U;
693
#else
694
  uint32_t result;
695
  __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
696
  return result;
697
#endif
698
}
699
#endif
700
 
701
 
702
/**
703
  \brief   Set Main Stack Pointer Limit
704
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
705
  Stack Pointer Limit register hence the write is silently ignored.
706
 
707
  \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
708
  \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
709
 */
710
__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
711
{
712
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
713
    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
714
  // without main extensions, the non-secure MSPLIM is RAZ/WI
715
  (void)MainStackPtrLimit;
716
#else
717
  __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
718
#endif
719
}
720
 
721
 
722
#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
723
/**
724
  \brief   Set Main Stack Pointer Limit (non-secure)
725
  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
726
  Stack Pointer Limit register hence the write is silently ignored.
727
 
728
  \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
729
  \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
730
 */
731
__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
732
{
733
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
734
  // without main extensions, the non-secure MSPLIM is RAZ/WI
735
  (void)MainStackPtrLimit;
736
#else
737
  __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
738
#endif
739
}
740
#endif
741
 
742
#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
743
           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
744
 
745
/**
746
  \brief   Get FPSCR
747
  \details Returns the current value of the Floating Point Status/Control register.
748
  \return               Floating Point Status/Control register value
749
 */
750
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
751
     (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
752
#define __get_FPSCR      (uint32_t)__builtin_arm_get_fpscr
753
#else
754
#define __get_FPSCR()      ((uint32_t)0U)
755
#endif
756
 
757
/**
758
  \brief   Set FPSCR
759
  \details Assigns the given value to the Floating Point Status/Control register.
760
  \param [in]    fpscr  Floating Point Status/Control value to set
761
 */
762
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
763
     (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
764
#define __set_FPSCR      __builtin_arm_set_fpscr
765
#else
766
#define __set_FPSCR(x)      ((void)(x))
767
#endif
768
 
769
 
770
/*@} end of CMSIS_Core_RegAccFunctions */
771
 
772
 
773
/* ##########################  Core Instruction Access  ######################### */
774
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
775
  Access to dedicated instructions
776
  @{
777
*/
778
 
779
/* Define macros for porting to both thumb1 and thumb2.
780
 * For thumb1, use low register (r0-r7), specified by constraint "l"
781
 * Otherwise, use general registers, specified by constraint "r" */
782
#if defined (__thumb__) && !defined (__thumb2__)
783
#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
784
#define __CMSIS_GCC_USE_REG(r) "l" (r)
785
#else
786
#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
787
#define __CMSIS_GCC_USE_REG(r) "r" (r)
788
#endif
789
 
790
/**
791
  \brief   No Operation
792
  \details No Operation does nothing. This instruction can be used for code alignment purposes.
793
 */
794
#define __NOP          __builtin_arm_nop
795
 
796
/**
797
  \brief   Wait For Interrupt
798
  \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
799
 */
800
#define __WFI          __builtin_arm_wfi
801
 
802
 
803
/**
804
  \brief   Wait For Event
805
  \details Wait For Event is a hint instruction that permits the processor to enter
806
           a low-power state until one of a number of events occurs.
807
 */
808
#define __WFE          __builtin_arm_wfe
809
 
810
 
811
/**
812
  \brief   Send Event
813
  \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
814
 */
815
#define __SEV          __builtin_arm_sev
816
 
817
 
818
/**
819
  \brief   Instruction Synchronization Barrier
820
  \details Instruction Synchronization Barrier flushes the pipeline in the processor,
821
           so that all instructions following the ISB are fetched from cache or memory,
822
           after the instruction has been completed.
823
 */
824
#define __ISB()        __builtin_arm_isb(0xF);
825
 
826
/**
827
  \brief   Data Synchronization Barrier
828
  \details Acts as a special kind of Data Memory Barrier.
829
           It completes when all explicit memory accesses before this instruction complete.
830
 */
831
#define __DSB()        __builtin_arm_dsb(0xF);
832
 
833
 
834
/**
835
  \brief   Data Memory Barrier
836
  \details Ensures the apparent order of the explicit memory operations before
837
           and after the instruction, without ensuring their completion.
838
 */
839
#define __DMB()        __builtin_arm_dmb(0xF);
840
 
841
 
842
/**
843
  \brief   Reverse byte order (32 bit)
844
  \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
845
  \param [in]    value  Value to reverse
846
  \return               Reversed value
847
 */
848
#define __REV(value)   __builtin_bswap32(value)
849
 
850
 
851
/**
852
  \brief   Reverse byte order (16 bit)
853
  \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
854
  \param [in]    value  Value to reverse
855
  \return               Reversed value
856
 */
857
#define __REV16(value) __ROR(__REV(value), 16)
858
 
859
 
860
/**
861
  \brief   Reverse byte order (16 bit)
862
  \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
863
  \param [in]    value  Value to reverse
864
  \return               Reversed value
865
 */
866
#define __REVSH(value) (int16_t)__builtin_bswap16(value)
867
 
868
 
869
/**
870
  \brief   Rotate Right in unsigned value (32 bit)
871
  \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
872
  \param [in]    op1  Value to rotate
873
  \param [in]    op2  Number of Bits to rotate
874
  \return               Rotated value
875
 */
876
__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
877
{
878
  op2 %= 32U;
879
  if (op2 == 0U)
880
  {
881
    return op1;
882
  }
883
  return (op1 >> op2) | (op1 << (32U - op2));
884
}
885
 
886
 
887
/**
888
  \brief   Breakpoint
889
  \details Causes the processor to enter Debug state.
890
           Debug tools can use this to investigate system state when the instruction at a particular address is reached.
891
  \param [in]    value  is ignored by the processor.
892
                 If required, a debugger can use it to store additional information about the breakpoint.
893
 */
894
#define __BKPT(value)     __ASM volatile ("bkpt "#value)
895
 
896
 
897
/**
898
  \brief   Reverse bit order of value
899
  \details Reverses the bit order of the given value.
900
  \param [in]    value  Value to reverse
901
  \return               Reversed value
902
 */
903
#define __RBIT            __builtin_arm_rbit
904
 
905
/**
906
  \brief   Count leading zeros
907
  \details Counts the number of leading zeros of a data value.
908
  \param [in]  value  Value to count the leading zeros
909
  \return             number of leading zeros in value
910
 */
911
#define __CLZ             (uint8_t)__builtin_clz
912
 
913
 
914
#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
915
     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
916
     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
917
     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
918
/**
919
  \brief   LDR Exclusive (8 bit)
920
  \details Executes a exclusive LDR instruction for 8 bit value.
921
  \param [in]    ptr  Pointer to data
922
  \return             value of type uint8_t at (*ptr)
923
 */
924
#define __LDREXB        (uint8_t)__builtin_arm_ldrex
925
 
926
 
927
/**
928
  \brief   LDR Exclusive (16 bit)
929
  \details Executes a exclusive LDR instruction for 16 bit values.
930
  \param [in]    ptr  Pointer to data
931
  \return        value of type uint16_t at (*ptr)
932
 */
933
#define __LDREXH        (uint16_t)__builtin_arm_ldrex
934
 
935
 
936
/**
937
  \brief   LDR Exclusive (32 bit)
938
  \details Executes a exclusive LDR instruction for 32 bit values.
939
  \param [in]    ptr  Pointer to data
940
  \return        value of type uint32_t at (*ptr)
941
 */
942
#define __LDREXW        (uint32_t)__builtin_arm_ldrex
943
 
944
 
945
/**
946
  \brief   STR Exclusive (8 bit)
947
  \details Executes a exclusive STR instruction for 8 bit values.
948
  \param [in]  value  Value to store
949
  \param [in]    ptr  Pointer to location
950
  \return          0  Function succeeded
951
  \return          1  Function failed
952
 */
953
#define __STREXB        (uint32_t)__builtin_arm_strex
954
 
955
 
956
/**
957
  \brief   STR Exclusive (16 bit)
958
  \details Executes a exclusive STR instruction for 16 bit values.
959
  \param [in]  value  Value to store
960
  \param [in]    ptr  Pointer to location
961
  \return          0  Function succeeded
962
  \return          1  Function failed
963
 */
964
#define __STREXH        (uint32_t)__builtin_arm_strex
965
 
966
 
967
/**
968
  \brief   STR Exclusive (32 bit)
969
  \details Executes a exclusive STR instruction for 32 bit values.
970
  \param [in]  value  Value to store
971
  \param [in]    ptr  Pointer to location
972
  \return          0  Function succeeded
973
  \return          1  Function failed
974
 */
975
#define __STREXW        (uint32_t)__builtin_arm_strex
976
 
977
 
978
/**
979
  \brief   Remove the exclusive lock
980
  \details Removes the exclusive lock which is created by LDREX.
981
 */
982
#define __CLREX             __builtin_arm_clrex
983
 
984
#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
985
           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
986
           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
987
           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
988
 
989
 
990
#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
991
     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
992
     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
993
 
994
/**
995
  \brief   Signed Saturate
996
  \details Saturates a signed value.
997
  \param [in]  value  Value to be saturated
998
  \param [in]    sat  Bit position to saturate to (1..32)
999
  \return             Saturated value
1000
 */
1001
#define __SSAT             __builtin_arm_ssat
1002
 
1003
 
1004
/**
1005
  \brief   Unsigned Saturate
1006
  \details Saturates an unsigned value.
1007
  \param [in]  value  Value to be saturated
1008
  \param [in]    sat  Bit position to saturate to (0..31)
1009
  \return             Saturated value
1010
 */
1011
#define __USAT             __builtin_arm_usat
1012
 
1013
 
1014
/**
1015
  \brief   Rotate Right with Extend (32 bit)
1016
  \details Moves each bit of a bitstring right by one bit.
1017
           The carry input is shifted in at the left end of the bitstring.
1018
  \param [in]    value  Value to rotate
1019
  \return               Rotated value
1020
 */
1021
__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1022
{
1023
  uint32_t result;
1024
 
1025
  __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1026
  return(result);
1027
}
1028
 
1029
 
1030
/**
1031
  \brief   LDRT Unprivileged (8 bit)
1032
  \details Executes a Unprivileged LDRT instruction for 8 bit value.
1033
  \param [in]    ptr  Pointer to data
1034
  \return             value of type uint8_t at (*ptr)
1035
 */
1036
__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1037
{
1038
  uint32_t result;
1039
 
1040
  __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1041
  return ((uint8_t) result);    /* Add explicit type cast here */
1042
}
1043
 
1044
 
1045
/**
1046
  \brief   LDRT Unprivileged (16 bit)
1047
  \details Executes a Unprivileged LDRT instruction for 16 bit values.
1048
  \param [in]    ptr  Pointer to data
1049
  \return        value of type uint16_t at (*ptr)
1050
 */
1051
__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1052
{
1053
  uint32_t result;
1054
 
1055
  __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1056
  return ((uint16_t) result);    /* Add explicit type cast here */
1057
}
1058
 
1059
 
1060
/**
1061
  \brief   LDRT Unprivileged (32 bit)
1062
  \details Executes a Unprivileged LDRT instruction for 32 bit values.
1063
  \param [in]    ptr  Pointer to data
1064
  \return        value of type uint32_t at (*ptr)
1065
 */
1066
__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1067
{
1068
  uint32_t result;
1069
 
1070
  __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1071
  return(result);
1072
}
1073
 
1074
 
1075
/**
1076
  \brief   STRT Unprivileged (8 bit)
1077
  \details Executes a Unprivileged STRT instruction for 8 bit values.
1078
  \param [in]  value  Value to store
1079
  \param [in]    ptr  Pointer to location
1080
 */
1081
__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1082
{
1083
  __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1084
}
1085
 
1086
 
1087
/**
1088
  \brief   STRT Unprivileged (16 bit)
1089
  \details Executes a Unprivileged STRT instruction for 16 bit values.
1090
  \param [in]  value  Value to store
1091
  \param [in]    ptr  Pointer to location
1092
 */
1093
__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1094
{
1095
  __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1096
}
1097
 
1098
 
1099
/**
1100
  \brief   STRT Unprivileged (32 bit)
1101
  \details Executes a Unprivileged STRT instruction for 32 bit values.
1102
  \param [in]  value  Value to store
1103
  \param [in]    ptr  Pointer to location
1104
 */
1105
__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1106
{
1107
  __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1108
}
1109
 
1110
#else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1111
           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1112
           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1113
 
1114
/**
1115
  \brief   Signed Saturate
1116
  \details Saturates a signed value.
1117
  \param [in]  value  Value to be saturated
1118
  \param [in]    sat  Bit position to saturate to (1..32)
1119
  \return             Saturated value
1120
 */
1121
__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1122
{
1123
  if ((sat >= 1U) && (sat <= 32U))
1124
  {
1125
    const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1126
    const int32_t min = -1 - max ;
1127
    if (val > max)
1128
    {
1129
      return max;
1130
    }
1131
    else if (val < min)
1132
    {
1133
      return min;
1134
    }
1135
  }
1136
  return val;
1137
}
1138
 
1139
/**
1140
  \brief   Unsigned Saturate
1141
  \details Saturates an unsigned value.
1142
  \param [in]  value  Value to be saturated
1143
  \param [in]    sat  Bit position to saturate to (0..31)
1144
  \return             Saturated value
1145
 */
1146
__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1147
{
1148
  if (sat <= 31U)
1149
  {
1150
    const uint32_t max = ((1U << sat) - 1U);
1151
    if (val > (int32_t)max)
1152
    {
1153
      return max;
1154
    }
1155
    else if (val < 0)
1156
    {
1157
      return 0U;
1158
    }
1159
  }
1160
  return (uint32_t)val;
1161
}
1162
 
1163
#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1164
           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1165
           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1166
 
1167
 
1168
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1169
     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1170
/**
1171
  \brief   Load-Acquire (8 bit)
1172
  \details Executes a LDAB instruction for 8 bit value.
1173
  \param [in]    ptr  Pointer to data
1174
  \return             value of type uint8_t at (*ptr)
1175
 */
1176
__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1177
{
1178
  uint32_t result;
1179
 
1180
  __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1181
  return ((uint8_t) result);
1182
}
1183
 
1184
 
1185
/**
1186
  \brief   Load-Acquire (16 bit)
1187
  \details Executes a LDAH instruction for 16 bit values.
1188
  \param [in]    ptr  Pointer to data
1189
  \return        value of type uint16_t at (*ptr)
1190
 */
1191
__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1192
{
1193
  uint32_t result;
1194
 
1195
  __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1196
  return ((uint16_t) result);
1197
}
1198
 
1199
 
1200
/**
1201
  \brief   Load-Acquire (32 bit)
1202
  \details Executes a LDA instruction for 32 bit values.
1203
  \param [in]    ptr  Pointer to data
1204
  \return        value of type uint32_t at (*ptr)
1205
 */
1206
__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1207
{
1208
  uint32_t result;
1209
 
1210
  __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1211
  return(result);
1212
}
1213
 
1214
 
1215
/**
1216
  \brief   Store-Release (8 bit)
1217
  \details Executes a STLB instruction for 8 bit values.
1218
  \param [in]  value  Value to store
1219
  \param [in]    ptr  Pointer to location
1220
 */
1221
__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1222
{
1223
  __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1224
}
1225
 
1226
 
1227
/**
1228
  \brief   Store-Release (16 bit)
1229
  \details Executes a STLH instruction for 16 bit values.
1230
  \param [in]  value  Value to store
1231
  \param [in]    ptr  Pointer to location
1232
 */
1233
__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1234
{
1235
  __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1236
}
1237
 
1238
 
1239
/**
1240
  \brief   Store-Release (32 bit)
1241
  \details Executes a STL instruction for 32 bit values.
1242
  \param [in]  value  Value to store
1243
  \param [in]    ptr  Pointer to location
1244
 */
1245
__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1246
{
1247
  __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1248
}
1249
 
1250
 
1251
/**
1252
  \brief   Load-Acquire Exclusive (8 bit)
1253
  \details Executes a LDAB exclusive instruction for 8 bit value.
1254
  \param [in]    ptr  Pointer to data
1255
  \return             value of type uint8_t at (*ptr)
1256
 */
1257
#define     __LDAEXB                 (uint8_t)__builtin_arm_ldaex
1258
 
1259
 
1260
/**
1261
  \brief   Load-Acquire Exclusive (16 bit)
1262
  \details Executes a LDAH exclusive instruction for 16 bit values.
1263
  \param [in]    ptr  Pointer to data
1264
  \return        value of type uint16_t at (*ptr)
1265
 */
1266
#define     __LDAEXH                 (uint16_t)__builtin_arm_ldaex
1267
 
1268
 
1269
/**
1270
  \brief   Load-Acquire Exclusive (32 bit)
1271
  \details Executes a LDA exclusive instruction for 32 bit values.
1272
  \param [in]    ptr  Pointer to data
1273
  \return        value of type uint32_t at (*ptr)
1274
 */
1275
#define     __LDAEX                  (uint32_t)__builtin_arm_ldaex
1276
 
1277
 
1278
/**
1279
  \brief   Store-Release Exclusive (8 bit)
1280
  \details Executes a STLB exclusive instruction for 8 bit values.
1281
  \param [in]  value  Value to store
1282
  \param [in]    ptr  Pointer to location
1283
  \return          0  Function succeeded
1284
  \return          1  Function failed
1285
 */
1286
#define     __STLEXB                 (uint32_t)__builtin_arm_stlex
1287
 
1288
 
1289
/**
1290
  \brief   Store-Release Exclusive (16 bit)
1291
  \details Executes a STLH exclusive instruction for 16 bit values.
1292
  \param [in]  value  Value to store
1293
  \param [in]    ptr  Pointer to location
1294
  \return          0  Function succeeded
1295
  \return          1  Function failed
1296
 */
1297
#define     __STLEXH                 (uint32_t)__builtin_arm_stlex
1298
 
1299
 
1300
/**
1301
  \brief   Store-Release Exclusive (32 bit)
1302
  \details Executes a STL exclusive instruction for 32 bit values.
1303
  \param [in]  value  Value to store
1304
  \param [in]    ptr  Pointer to location
1305
  \return          0  Function succeeded
1306
  \return          1  Function failed
1307
 */
1308
#define     __STLEX                  (uint32_t)__builtin_arm_stlex
1309
 
1310
#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1311
           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1312
 
1313
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1314
 
1315
 
1316
/* ###################  Compiler specific Intrinsics  ########################### */
1317
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1318
  Access to dedicated SIMD instructions
1319
  @{
1320
*/
1321
 
1322
#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1323
 
1324
__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1325
{
1326
  uint32_t result;
1327
 
1328
  __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1329
  return(result);
1330
}
1331
 
1332
__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1333
{
1334
  uint32_t result;
1335
 
1336
  __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1337
  return(result);
1338
}
1339
 
1340
__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1341
{
1342
  uint32_t result;
1343
 
1344
  __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1345
  return(result);
1346
}
1347
 
1348
__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1349
{
1350
  uint32_t result;
1351
 
1352
  __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1353
  return(result);
1354
}
1355
 
1356
__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1357
{
1358
  uint32_t result;
1359
 
1360
  __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1361
  return(result);
1362
}
1363
 
1364
__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1365
{
1366
  uint32_t result;
1367
 
1368
  __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1369
  return(result);
1370
}
1371
 
1372
 
1373
__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1374
{
1375
  uint32_t result;
1376
 
1377
  __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1378
  return(result);
1379
}
1380
 
1381
__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1382
{
1383
  uint32_t result;
1384
 
1385
  __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1386
  return(result);
1387
}
1388
 
1389
__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1390
{
1391
  uint32_t result;
1392
 
1393
  __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1394
  return(result);
1395
}
1396
 
1397
__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1398
{
1399
  uint32_t result;
1400
 
1401
  __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1402
  return(result);
1403
}
1404
 
1405
__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1406
{
1407
  uint32_t result;
1408
 
1409
  __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1410
  return(result);
1411
}
1412
 
1413
__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1414
{
1415
  uint32_t result;
1416
 
1417
  __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1418
  return(result);
1419
}
1420
 
1421
 
1422
__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1423
{
1424
  uint32_t result;
1425
 
1426
  __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1427
  return(result);
1428
}
1429
 
1430
__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1431
{
1432
  uint32_t result;
1433
 
1434
  __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1435
  return(result);
1436
}
1437
 
1438
__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1439
{
1440
  uint32_t result;
1441
 
1442
  __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1443
  return(result);
1444
}
1445
 
1446
__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1447
{
1448
  uint32_t result;
1449
 
1450
  __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1451
  return(result);
1452
}
1453
 
1454
__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1455
{
1456
  uint32_t result;
1457
 
1458
  __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1459
  return(result);
1460
}
1461
 
1462
__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1463
{
1464
  uint32_t result;
1465
 
1466
  __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1467
  return(result);
1468
}
1469
 
1470
__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1471
{
1472
  uint32_t result;
1473
 
1474
  __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1475
  return(result);
1476
}
1477
 
1478
__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1479
{
1480
  uint32_t result;
1481
 
1482
  __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1483
  return(result);
1484
}
1485
 
1486
__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1487
{
1488
  uint32_t result;
1489
 
1490
  __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1491
  return(result);
1492
}
1493
 
1494
__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1495
{
1496
  uint32_t result;
1497
 
1498
  __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1499
  return(result);
1500
}
1501
 
1502
__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1503
{
1504
  uint32_t result;
1505
 
1506
  __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1507
  return(result);
1508
}
1509
 
1510
__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1511
{
1512
  uint32_t result;
1513
 
1514
  __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1515
  return(result);
1516
}
1517
 
1518
__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1519
{
1520
  uint32_t result;
1521
 
1522
  __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1523
  return(result);
1524
}
1525
 
1526
__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1527
{
1528
  uint32_t result;
1529
 
1530
  __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1531
  return(result);
1532
}
1533
 
1534
__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1535
{
1536
  uint32_t result;
1537
 
1538
  __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1539
  return(result);
1540
}
1541
 
1542
__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1543
{
1544
  uint32_t result;
1545
 
1546
  __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1547
  return(result);
1548
}
1549
 
1550
__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1551
{
1552
  uint32_t result;
1553
 
1554
  __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1555
  return(result);
1556
}
1557
 
1558
__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1559
{
1560
  uint32_t result;
1561
 
1562
  __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1563
  return(result);
1564
}
1565
 
1566
__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1567
{
1568
  uint32_t result;
1569
 
1570
  __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1571
  return(result);
1572
}
1573
 
1574
__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1575
{
1576
  uint32_t result;
1577
 
1578
  __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1579
  return(result);
1580
}
1581
 
1582
__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1583
{
1584
  uint32_t result;
1585
 
1586
  __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1587
  return(result);
1588
}
1589
 
1590
__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1591
{
1592
  uint32_t result;
1593
 
1594
  __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1595
  return(result);
1596
}
1597
 
1598
__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1599
{
1600
  uint32_t result;
1601
 
1602
  __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1603
  return(result);
1604
}
1605
 
1606
__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1607
{
1608
  uint32_t result;
1609
 
1610
  __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1611
  return(result);
1612
}
1613
 
1614
__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1615
{
1616
  uint32_t result;
1617
 
1618
  __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1619
  return(result);
1620
}
1621
 
1622
__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1623
{
1624
  uint32_t result;
1625
 
1626
  __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1627
  return(result);
1628
}
1629
 
1630
#define __SSAT16(ARG1,ARG2) \
1631
({                          \
1632
  int32_t __RES, __ARG1 = (ARG1); \
1633
  __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1634
  __RES; \
1635
 })
1636
 
1637
#define __USAT16(ARG1,ARG2) \
1638
({                          \
1639
  uint32_t __RES, __ARG1 = (ARG1); \
1640
  __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1641
  __RES; \
1642
 })
1643
 
1644
__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1645
{
1646
  uint32_t result;
1647
 
1648
  __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1649
  return(result);
1650
}
1651
 
1652
__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1653
{
1654
  uint32_t result;
1655
 
1656
  __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1657
  return(result);
1658
}
1659
 
1660
__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1661
{
1662
  uint32_t result;
1663
 
1664
  __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1665
  return(result);
1666
}
1667
 
1668
__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1669
{
1670
  uint32_t result;
1671
 
1672
  __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1673
  return(result);
1674
}
1675
 
1676
__STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1677
{
1678
  uint32_t result;
1679
 
1680
  __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1681
  return(result);
1682
}
1683
 
1684
__STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1685
{
1686
  uint32_t result;
1687
 
1688
  __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1689
  return(result);
1690
}
1691
 
1692
__STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1693
{
1694
  uint32_t result;
1695
 
1696
  __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1697
  return(result);
1698
}
1699
 
1700
__STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1701
{
1702
  uint32_t result;
1703
 
1704
  __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1705
  return(result);
1706
}
1707
 
1708
__STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1709
{
1710
  union llreg_u{
1711
    uint32_t w32[2];
1712
    uint64_t w64;
1713
  } llr;
1714
  llr.w64 = acc;
1715
 
1716
#ifndef __ARMEB__   /* Little endian */
1717
  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1718
#else               /* Big endian */
1719
  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1720
#endif
1721
 
1722
  return(llr.w64);
1723
}
1724
 
1725
__STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1726
{
1727
  union llreg_u{
1728
    uint32_t w32[2];
1729
    uint64_t w64;
1730
  } llr;
1731
  llr.w64 = acc;
1732
 
1733
#ifndef __ARMEB__   /* Little endian */
1734
  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1735
#else               /* Big endian */
1736
  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1737
#endif
1738
 
1739
  return(llr.w64);
1740
}
1741
 
1742
__STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1743
{
1744
  uint32_t result;
1745
 
1746
  __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1747
  return(result);
1748
}
1749
 
1750
__STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1751
{
1752
  uint32_t result;
1753
 
1754
  __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1755
  return(result);
1756
}
1757
 
1758
__STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1759
{
1760
  uint32_t result;
1761
 
1762
  __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1763
  return(result);
1764
}
1765
 
1766
__STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1767
{
1768
  uint32_t result;
1769
 
1770
  __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1771
  return(result);
1772
}
1773
 
1774
__STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1775
{
1776
  union llreg_u{
1777
    uint32_t w32[2];
1778
    uint64_t w64;
1779
  } llr;
1780
  llr.w64 = acc;
1781
 
1782
#ifndef __ARMEB__   /* Little endian */
1783
  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1784
#else               /* Big endian */
1785
  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1786
#endif
1787
 
1788
  return(llr.w64);
1789
}
1790
 
1791
__STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1792
{
1793
  union llreg_u{
1794
    uint32_t w32[2];
1795
    uint64_t w64;
1796
  } llr;
1797
  llr.w64 = acc;
1798
 
1799
#ifndef __ARMEB__   /* Little endian */
1800
  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1801
#else               /* Big endian */
1802
  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1803
#endif
1804
 
1805
  return(llr.w64);
1806
}
1807
 
1808
__STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
1809
{
1810
  uint32_t result;
1811
 
1812
  __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1813
  return(result);
1814
}
1815
 
1816
__STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
1817
{
1818
  int32_t result;
1819
 
1820
  __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1821
  return(result);
1822
}
1823
 
1824
__STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
1825
{
1826
  int32_t result;
1827
 
1828
  __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1829
  return(result);
1830
}
1831
 
1832
#if 0
1833
#define __PKHBT(ARG1,ARG2,ARG3) \
1834
({                          \
1835
  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1836
  __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
1837
  __RES; \
1838
 })
1839
 
1840
#define __PKHTB(ARG1,ARG2,ARG3) \
1841
({                          \
1842
  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1843
  if (ARG3 == 0) \
1844
    __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
1845
  else \
1846
    __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
1847
  __RES; \
1848
 })
1849
#endif
1850
 
1851
#define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
1852
                                           ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
1853
 
1854
#define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
1855
                                           ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
1856
 
1857
__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1858
{
1859
  int32_t result;
1860
 
1861
  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
1862
  return(result);
1863
}
1864
 
1865
#endif /* (__ARM_FEATURE_DSP == 1) */
1866
/*@} end of group CMSIS_SIMD_intrinsics */
1867
 
1868
 
1869
#endif /* __CMSIS_ARMCLANG_H */