Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
3 | mjames | 1 | /********************************************************************* |
2 | This is a library for our Monochrome OLEDs based on SSD1306 drivers |
||
3 | |||
4 | Pick one up today in the adafruit shop! |
||
5 | ------> http://www.adafruit.com/category/63_98 |
||
6 | |||
7 | These displays use SPI to communicate, 4 or 5 pins are required to |
||
8 | interface |
||
9 | |||
10 | Adafruit invests time and resources providing this open source code, |
||
11 | please support Adafruit and open-source hardware by purchasing |
||
12 | products from Adafruit! |
||
13 | |||
14 | Written by Limor Fried/Ladyada for Adafruit Industries. |
||
15 | BSD license, check license.txt for more information |
||
16 | All text above, and the splash screen below must be included in any redistribution |
||
17 | |||
18 | This code is taken from the ADAfruit library - it is used for playing with an OLED screen |
||
19 | |||
20 | *********************************************************************/ |
||
21 | |||
22 | #include "ch.h" |
||
23 | #include "hal.h" |
||
24 | |||
25 | #include <stdint.h> |
||
26 | #include <string.h> |
||
27 | #include "SSD1306.h" |
||
28 | #include "spiInterface.h" |
||
29 | |||
30 | #define swap(x,y) { typeof(x)t = x; x=y; y=t; } |
||
31 | #define abs(x) ((x)>0?(x):-(x)) |
||
32 | |||
33 | static uint8_t rotation = 0; |
||
34 | const uint16_t WIDTH = SSD1306_LCDWIDTH; |
||
35 | const uint16_t HEIGHT = SSD1306_LCDHEIGHT; |
||
36 | |||
37 | // the memory buffer for the LCD |
||
38 | |||
39 | // pointer to the current display - affects buffer used and also chipselect |
||
40 | |||
41 | uint8_t display_buffer[SSD1306_LCDHEIGHT * SSD1306_LCDWIDTH |
||
42 | / 8]; |
||
43 | |||
44 | inline uint8_t * display_address(void) { |
||
45 | return (uint8_t *) (&display_buffer[0]); |
||
46 | } |
||
47 | |||
48 | inline uint8_t getRotation(void) { |
||
49 | return rotation; |
||
50 | } |
||
51 | |||
52 | inline int16_t width(void) { |
||
53 | switch (rotation) { |
||
54 | case 0: |
||
55 | return WIDTH; |
||
56 | break; |
||
57 | case 1: |
||
58 | return WIDTH; |
||
59 | break; |
||
60 | case 2: |
||
61 | return HEIGHT; |
||
62 | break; |
||
63 | case 3: |
||
64 | return -WIDTH; |
||
65 | break; |
||
66 | } |
||
67 | return 0; |
||
68 | } |
||
69 | |||
70 | inline int16_t height(void) { |
||
71 | switch (rotation) { |
||
72 | case 0: |
||
73 | return HEIGHT; |
||
74 | break; |
||
75 | case 1: |
||
76 | return HEIGHT; |
||
77 | break; |
||
78 | case 2: |
||
79 | return WIDTH; |
||
80 | break; |
||
81 | case 3: |
||
82 | return -HEIGHT; |
||
83 | break; |
||
84 | } |
||
85 | return 0; |
||
86 | } |
||
87 | |||
88 | |||
89 | // the most basic function, set a single pixel |
||
90 | inline void drawPixel(int16_t x, int16_t y, uint16_t color) { |
||
91 | if ((x < 0) || (x >= width()) || (y < 0) || (y >= height())) |
||
92 | return; |
||
93 | |||
94 | // check rotation, move pixel around if necessary |
||
95 | switch (getRotation()) { |
||
96 | case 1: |
||
97 | swap(x, y) |
||
98 | ; |
||
99 | x = WIDTH - x - 1; |
||
100 | break; |
||
101 | case 2: |
||
102 | x = WIDTH - x - 1; |
||
103 | y = HEIGHT - y - 1; |
||
104 | break; |
||
105 | case 3: |
||
106 | swap(x, y) |
||
107 | ; |
||
108 | y = HEIGHT - y - 1; |
||
109 | break; |
||
110 | } |
||
111 | |||
112 | // x is which column |
||
113 | switch (color) { |
||
114 | case BLACK: |
||
115 | display_buffer[x + (y / 8) * SSD1306_LCDWIDTH] &= ~(1 << (y & 7)); |
||
116 | break; |
||
117 | |||
118 | default: |
||
119 | case WHITE: |
||
120 | display_buffer[x + (y / 8) * SSD1306_LCDWIDTH] |= (1 << (y & 7)); |
||
121 | break; |
||
122 | |||
123 | case INVERT: |
||
124 | display_buffer[x + (y / 8) * SSD1306_LCDWIDTH] ^= (1 << (y & 7)); |
||
125 | break; |
||
126 | } |
||
127 | } |
||
128 | |||
129 | void ssd1306_begin(uint8_t vccstate, uint8_t i2caddr) { |
||
130 | |||
131 | (void) i2caddr; |
||
132 | ssd1306resetDisplay(); |
||
133 | |||
134 | |||
135 | #if defined SSD1306_128_32 |
||
136 | // Init sequence for 128x32 OLED module |
||
137 | ssd1306commandSPIwrite(SSD1306_DISPLAYOFF);// 0xAE |
||
138 | ssd1306commandSPIwrite(SSD1306_SETDISPLAYCLOCKDIV);// 0xD5 |
||
139 | ssd1306commandSPIwrite(0x80);// the suggested ratio 0x80 |
||
140 | ssd1306commandSPIwrite(SSD1306_SETMULTIPLEX);// 0xA8 |
||
141 | ssd1306commandSPIwrite(0x1F); |
||
142 | ssd1306commandSPIwrite(SSD1306_SETDISPLAYOFFSET);// 0xD3 |
||
143 | ssd1306commandSPIwrite(0x0);// no offset |
||
144 | ssd1306commandSPIwrite(SSD1306_SETSTARTLINE | 0x0);// line #0 |
||
145 | ssd1306commandSPIwrite(SSD1306_CHARGEPUMP);// 0x8D |
||
146 | if (vccstate == SSD1306_EXTERNALVCC) |
||
147 | { ssd1306commandSPIwrite(0x10);} |
||
148 | else |
||
149 | { ssd1306commandSPIwrite(0x14);} |
||
150 | ssd1306commandSPIwrite(SSD1306_MEMORYMODE); // 0x20 |
||
151 | ssd1306commandSPIwrite(0x00);// 0x0 act like ks0108 |
||
152 | ssd1306commandSPIwrite(SSD1306_SEGREMAP | 0x1); |
||
153 | ssd1306commandSPIwrite(SSD1306_COMSCANDEC); |
||
154 | ssd1306commandSPIwrite(SSD1306_SETCOMPINS);// 0xDA |
||
155 | ssd1306commandSPIwrite(0x02); |
||
156 | ssd1306commandSPIwrite(SSD1306_SETCONTRAST);// 0x81 |
||
157 | ssd1306commandSPIwrite(0x8F); |
||
158 | ssd1306commandSPIwrite(SSD1306_SETPRECHARGE);// 0xd9 |
||
159 | if (vccstate == SSD1306_EXTERNALVCC) |
||
160 | { ssd1306commandSPIwrite(0x22);} |
||
161 | else |
||
162 | { ssd1306commandSPIwrite(0xF1);} |
||
163 | ssd1306commandSPIwrite(SSD1306_SETVCOMDETECT); // 0xDB |
||
164 | ssd1306commandSPIwrite(0x40); |
||
165 | ssd1306commandSPIwrite(SSD1306_DISPLAYALLON_RESUME);// 0xA4 |
||
166 | ssd1306commandSPIwrite(SSD1306_NORMALDISPLAY);// 0xA6 |
||
167 | #endif |
||
168 | |||
169 | #if defined SSD1306_128_64 |
||
170 | // Init sequence for 128x64 OLED module |
||
171 | ssd1306commandSPIwrite(SSD1306_DISPLAYOFF); // 0xAE |
||
172 | ssd1306commandSPIwrite(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5 |
||
173 | ssd1306commandSPIwrite(0x80); // the suggested ratio 0x80 |
||
174 | ssd1306commandSPIwrite(SSD1306_SETMULTIPLEX); // 0xA8 |
||
175 | ssd1306commandSPIwrite(0x3F); |
||
176 | ssd1306commandSPIwrite(SSD1306_SETDISPLAYOFFSET); // 0xD3 |
||
177 | ssd1306commandSPIwrite(0x0); // no offset |
||
178 | ssd1306commandSPIwrite(SSD1306_SETSTARTLINE | 0x0); // line #0 |
||
179 | ssd1306commandSPIwrite(SSD1306_CHARGEPUMP); // 0x8D |
||
180 | if (vccstate == SSD1306_EXTERNALVCC) { |
||
181 | ssd1306commandSPIwrite(0x10); |
||
182 | } else { |
||
183 | ssd1306commandSPIwrite(0x14); |
||
184 | } |
||
185 | ssd1306commandSPIwrite(SSD1306_MEMORYMODE); // 0x20 |
||
186 | ssd1306commandSPIwrite(0x00); // 0x0 act like ks0108 |
||
187 | ssd1306commandSPIwrite(SSD1306_SEGREMAP | 0x1); |
||
188 | ssd1306commandSPIwrite(SSD1306_COMSCANDEC); |
||
189 | ssd1306commandSPIwrite(SSD1306_SETCOMPINS); // 0xDA |
||
190 | ssd1306commandSPIwrite(0x12); |
||
191 | ssd1306commandSPIwrite(SSD1306_SETCONTRAST); // 0x81 |
||
192 | if (vccstate == SSD1306_EXTERNALVCC) { |
||
193 | ssd1306commandSPIwrite(0x9F); |
||
194 | } else { |
||
195 | ssd1306commandSPIwrite(0xCF); |
||
196 | } |
||
197 | ssd1306commandSPIwrite(SSD1306_SETPRECHARGE); // 0xd9 |
||
198 | if (vccstate == SSD1306_EXTERNALVCC) { |
||
199 | ssd1306commandSPIwrite(0x22); |
||
200 | } else { |
||
201 | ssd1306commandSPIwrite(0xF1); |
||
202 | } |
||
203 | ssd1306commandSPIwrite(SSD1306_SETVCOMDETECT); // 0xDB |
||
204 | ssd1306commandSPIwrite(0x40); |
||
205 | ssd1306commandSPIwrite(SSD1306_DISPLAYALLON_RESUME); // 0xA4 |
||
206 | ssd1306commandSPIwrite(SSD1306_NORMALDISPLAY); // 0xA6 |
||
207 | #endif |
||
208 | |||
209 | ssd1306commandSPIwrite(SSD1306_DISPLAYON); //--turn on oled panel |
||
210 | |||
211 | } |
||
212 | |||
213 | void invertDisplay(uint8_t i) { |
||
214 | if (i) { |
||
215 | ssd1306commandSPIwrite(SSD1306_INVERTDISPLAY); |
||
216 | } else { |
||
217 | ssd1306commandSPIwrite(SSD1306_NORMALDISPLAY); |
||
218 | } |
||
219 | } |
||
220 | |||
221 | |||
222 | // startscrollright |
||
223 | // Activate a right handed scroll for rows start through stop |
||
224 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
225 | // display.scrollright(0x00, 0x0F) |
||
226 | void startscrollright(uint8_t start, uint8_t stop) { |
||
227 | ssd1306commandSPIwrite(SSD1306_RIGHT_HORIZONTAL_SCROLL); |
||
228 | ssd1306commandSPIwrite(0X00); |
||
229 | ssd1306commandSPIwrite(start); |
||
230 | ssd1306commandSPIwrite(0X00); |
||
231 | ssd1306commandSPIwrite(stop); |
||
232 | ssd1306commandSPIwrite(0X00); |
||
233 | ssd1306commandSPIwrite(0XFF); |
||
234 | ssd1306commandSPIwrite(SSD1306_ACTIVATE_SCROLL); |
||
235 | } |
||
236 | |||
237 | // startscrollleft |
||
238 | // Activate a right handed scroll for rows start through stop |
||
239 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
240 | // display.scrollright(0x00, 0x0F) |
||
241 | void startscrollleft(uint8_t start, uint8_t stop) { |
||
242 | ssd1306commandSPIwrite(SSD1306_LEFT_HORIZONTAL_SCROLL); |
||
243 | ssd1306commandSPIwrite(0X00); |
||
244 | ssd1306commandSPIwrite(start); |
||
245 | ssd1306commandSPIwrite(0X00); |
||
246 | ssd1306commandSPIwrite(stop); |
||
247 | ssd1306commandSPIwrite(0X00); |
||
248 | ssd1306commandSPIwrite(0XFF); |
||
249 | ssd1306commandSPIwrite(SSD1306_ACTIVATE_SCROLL); |
||
250 | } |
||
251 | |||
252 | // startscrolldiagright |
||
253 | // Activate a diagonal scroll for rows start through stop |
||
254 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
255 | // display.scrollright(0x00, 0x0F) |
||
256 | void startscrolldiagright(uint8_t start, uint8_t stop) { |
||
257 | ssd1306commandSPIwrite(SSD1306_SET_VERTICAL_SCROLL_AREA); |
||
258 | ssd1306commandSPIwrite(0X00); |
||
259 | ssd1306commandSPIwrite(SSD1306_LCDHEIGHT); |
||
260 | ssd1306commandSPIwrite(SSD1306_VERTICAL_AND_RIGHT_HORIZONTAL_SCROLL); |
||
261 | ssd1306commandSPIwrite(0X00); |
||
262 | ssd1306commandSPIwrite(start); |
||
263 | ssd1306commandSPIwrite(0X00); |
||
264 | ssd1306commandSPIwrite(stop); |
||
265 | ssd1306commandSPIwrite(0X01); |
||
266 | ssd1306commandSPIwrite(SSD1306_ACTIVATE_SCROLL); |
||
267 | } |
||
268 | |||
269 | // startscrolldiagleft |
||
270 | // Activate a diagonal scroll for rows start through stop |
||
271 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
272 | // display.scrollright(0x00, 0x0F) |
||
273 | void startscrolldiagleft(uint8_t start, uint8_t stop) { |
||
274 | ssd1306commandSPIwrite(SSD1306_SET_VERTICAL_SCROLL_AREA); |
||
275 | ssd1306commandSPIwrite(0X00); |
||
276 | ssd1306commandSPIwrite(SSD1306_LCDHEIGHT); |
||
277 | ssd1306commandSPIwrite(SSD1306_VERTICAL_AND_LEFT_HORIZONTAL_SCROLL); |
||
278 | ssd1306commandSPIwrite(0X00); |
||
279 | ssd1306commandSPIwrite(start); |
||
280 | ssd1306commandSPIwrite(0X00); |
||
281 | ssd1306commandSPIwrite(stop); |
||
282 | ssd1306commandSPIwrite(0X01); |
||
283 | ssd1306commandSPIwrite(SSD1306_ACTIVATE_SCROLL); |
||
284 | } |
||
285 | |||
286 | void stopscroll(void) { |
||
287 | ssd1306commandSPIwrite(SSD1306_DEACTIVATE_SCROLL); |
||
288 | } |
||
289 | |||
290 | // Dim the display |
||
291 | // dim = true: display is dimmed |
||
292 | // dim = false: display is normal |
||
293 | void dim(uint8_t contrast) { |
||
294 | |||
295 | // the range of contrast to too small to be really useful |
||
296 | // it is useful to dim the display |
||
297 | ssd1306commandSPIwrite(SSD1306_SETCONTRAST); |
||
298 | ssd1306commandSPIwrite(contrast); |
||
299 | } |
||
300 | |||
301 | void display(void) { |
||
302 | |||
303 | |||
304 | // select entire display as window to write into |
||
305 | ssd1306commandSPIwrite(SSD1306_COLUMNADDR); |
||
306 | ssd1306commandSPIwrite(0); // Column start address (0 = reset) |
||
307 | ssd1306commandSPIwrite(SSD1306_RAMWIDTH-1); // Column end address (127 = reset) |
||
308 | |||
309 | ssd1306commandSPIwrite(SSD1306_PAGEADDR); |
||
310 | ssd1306commandSPIwrite(0); // Page start address (0 = reset) |
||
311 | ssd1306commandSPIwrite((SSD1306_LCDHEIGHT == 64) ? 7 : 3); // Page end address |
||
312 | |||
313 | int row; |
||
314 | |||
315 | int col = SSD1306_RAMWIDTH == 132 ? 2 : 0; |
||
316 | for (row = 0; row < SSD1306_LCDHEIGHT / 8; row++) { |
||
317 | // set the cursor to |
||
318 | ssd1306commandSPIwrite(0xB0 + row); //set page address |
||
319 | ssd1306commandSPIwrite(col & 0xf); //set lower column address |
||
320 | ssd1306commandSPIwrite(0x10 | (col >> 4)); //set higher column address |
||
321 | |||
322 | ssd1306SendDisplay( |
||
323 | (uint8_t *) (&display_buffer[0]) + row * SSD1306_LCDWIDTH, |
||
324 | SSD1306_LCDWIDTH); |
||
325 | |||
326 | } |
||
327 | |||
328 | } |
||
329 | |||
330 | // clear everything |
||
331 | void clearDisplay(void) { |
||
332 | memset(&display_buffer, 0, (SSD1306_LCDWIDTH * SSD1306_LCDHEIGHT / 8)); |
||
333 | } |
||
334 | |||
335 | void drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { |
||
336 | boolean bSwap = false; |
||
337 | switch (rotation) { |
||
338 | case 0: |
||
339 | // 0 degree rotation, do nothing |
||
340 | break; |
||
341 | case 1: |
||
342 | // 90 degree rotation, swap x & y for rotation, then invert x |
||
343 | bSwap = true; |
||
344 | swap(x, y) |
||
345 | ; |
||
346 | x = WIDTH - x - 1; |
||
347 | break; |
||
348 | case 2: |
||
349 | // 180 degree rotation, invert x and y - then shift y around for height. |
||
350 | x = WIDTH - x - 1; |
||
351 | y = HEIGHT - y - 1; |
||
352 | x -= (w - 1); |
||
353 | break; |
||
354 | case 3: |
||
355 | // 270 degree rotation, swap x & y for rotation, then invert y and adjust y for w (not to become h) |
||
356 | bSwap = true; |
||
357 | swap(x, y) |
||
358 | ; |
||
359 | y = HEIGHT - y - 1; |
||
360 | y -= (w - 1); |
||
361 | break; |
||
362 | } |
||
363 | |||
364 | if (bSwap) { |
||
365 | drawFastVLineInternal(x, y, w, color); |
||
366 | } else { |
||
367 | drawFastHLineInternal(x, y, w, color); |
||
368 | } |
||
369 | } |
||
370 | |||
371 | void drawFastHLineInternal(int16_t x, int16_t y, int16_t w, uint16_t color) { |
||
372 | // Do bounds/limit checks |
||
373 | if (y < 0 || y >= HEIGHT) { |
||
374 | return; |
||
375 | } |
||
376 | |||
377 | // make sure we don't try to draw below 0 |
||
378 | if (x < 0) { |
||
379 | w += x; |
||
380 | x = 0; |
||
381 | } |
||
382 | |||
383 | // make sure we don't go off the edge of the display |
||
384 | if ((x + w) > WIDTH) { |
||
385 | w = (HEIGHT - x); |
||
386 | } |
||
387 | |||
388 | // if our width is now negative, punt |
||
389 | if (w <= 0) { |
||
390 | return; |
||
391 | } |
||
392 | |||
393 | // set up the pointer for movement through the buffer |
||
394 | register uint8_t *pBuf = &display_buffer[0]; |
||
395 | // adjust the buffer pointer for the current row |
||
396 | pBuf += ((y / 8) * SSD1306_LCDWIDTH); |
||
397 | // and offset x columns in |
||
398 | pBuf += x; |
||
399 | |||
400 | register uint8_t mask = 1 << (y & 7); |
||
401 | |||
402 | if (color == WHITE) { |
||
403 | while (w--) { |
||
404 | *pBuf++ |= mask; |
||
405 | } |
||
406 | } else { |
||
407 | mask = ~mask; |
||
408 | while (w--) { |
||
409 | *pBuf++ &= mask; |
||
410 | } |
||
411 | } |
||
412 | } |
||
413 | |||
414 | void drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { |
||
415 | boolean bSwap = false; |
||
416 | switch (rotation) { |
||
417 | case 0: |
||
418 | break; |
||
419 | case 1: |
||
420 | // 90 degree rotation, swap x & y for rotation, then invert x and adjust x for h (now to become w) |
||
421 | bSwap = true; |
||
422 | swap(x, y) |
||
423 | ; |
||
424 | x = WIDTH - x - 1; |
||
425 | x -= (h - 1); |
||
426 | break; |
||
427 | case 2: |
||
428 | // 180 degree rotation, invert x and y - then shift y around for height. |
||
429 | x = WIDTH - x - 1; |
||
430 | y = HEIGHT - y - 1; |
||
431 | y -= (h - 1); |
||
432 | break; |
||
433 | case 3: |
||
434 | // 270 degree rotation, swap x & y for rotation, then invert y |
||
435 | bSwap = true; |
||
436 | swap(x, y) |
||
437 | ; |
||
438 | y = HEIGHT - y - 1; |
||
439 | break; |
||
440 | } |
||
441 | |||
442 | if (bSwap) { |
||
443 | drawFastHLineInternal(x, y, h, color); |
||
444 | } else { |
||
445 | drawFastVLineInternal(x, y, h, color); |
||
446 | } |
||
447 | } |
||
448 | |||
449 | void drawFastVLineInternal(int16_t x, int16_t __y, int16_t __h, uint16_t color) { |
||
450 | |||
451 | // do nothing if we're off the left or right side of the screen |
||
452 | if (x < 0 || x >= WIDTH) { |
||
453 | return; |
||
454 | } |
||
455 | |||
456 | // make sure we don't try to draw below 0 |
||
457 | if (__y < 0) { |
||
458 | // __y is negative, this will subtract enough from __h to account for __y being 0 |
||
459 | __h += __y; |
||
460 | __y = 0; |
||
461 | |||
462 | } |
||
463 | |||
464 | // make sure we don't go past the height of the display |
||
465 | if ((__y + __h) > HEIGHT) { |
||
466 | __h = (HEIGHT - __y); |
||
467 | } |
||
468 | |||
469 | // if our height is now negative, punt |
||
470 | if (__h <= 0) { |
||
471 | return; |
||
472 | } |
||
473 | |||
474 | // this display doesn't need ints for coordinates, use local byte registers for faster juggling |
||
475 | register uint8_t y = __y; |
||
476 | register uint8_t h = __h; |
||
477 | |||
478 | // set up the pointer for fast movement through the buffer |
||
479 | register uint8_t *pBuf = &display_buffer[0]; |
||
480 | // adjust the buffer pointer for the current row |
||
481 | pBuf += ((y / 8) * SSD1306_LCDWIDTH); |
||
482 | // and offset x columns in |
||
483 | pBuf += x; |
||
484 | |||
485 | // do the first partial byte, if necessary - this requires some masking |
||
486 | register uint8_t mod = (y & 7); |
||
487 | if (mod) { |
||
488 | // mask off the high n bits we want to set |
||
489 | mod = 8 - mod; |
||
490 | |||
491 | // note - lookup table results in a nearly 10% performance improvement in fill* functions |
||
492 | // register uint8_t mask = ~(0xFF >> (mod)); |
||
493 | static uint8_t premask[8] = { 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, |
||
494 | 0xFE }; |
||
495 | register uint8_t mask = premask[mod]; |
||
496 | |||
497 | // adjust the mask if we're not going to reach the end of this byte |
||
498 | if (h < mod) { |
||
499 | mask &= (0XFF >> (mod - h)); |
||
500 | } |
||
501 | |||
502 | if (color == WHITE) { |
||
503 | *pBuf |= mask; |
||
504 | } else { |
||
505 | *pBuf &= ~mask; |
||
506 | } |
||
507 | |||
508 | // fast exit if we're done here! |
||
509 | if (h < mod) { |
||
510 | return; |
||
511 | } |
||
512 | |||
513 | h -= mod; |
||
514 | |||
515 | pBuf += SSD1306_LCDWIDTH; |
||
516 | } |
||
517 | |||
518 | // write solid bytes while we can - effectively doing 8 rows at a time |
||
519 | if (h >= 8) { |
||
520 | // store a local value to work with |
||
521 | register uint8_t val = (color == WHITE) ? 255 : 0; |
||
522 | |||
523 | do { |
||
524 | // write our value in |
||
525 | *pBuf = val; |
||
526 | |||
527 | // adjust the buffer forward 8 rows worth of data |
||
528 | pBuf += SSD1306_LCDWIDTH; |
||
529 | |||
530 | // adjust h & y (there's got to be a faster way for me to do this, but this should still help a fair bit for now) |
||
531 | h -= 8; |
||
532 | } while (h >= 8); |
||
533 | } |
||
534 | |||
535 | // now do the final partial byte, if necessary |
||
536 | if (h) { |
||
537 | mod = h & 7; |
||
538 | // this time we want to mask the low bits of the byte, vs the high bits we did above |
||
539 | // register uint8_t mask = (1 << mod) - 1; |
||
540 | // note - lookup table results in a nearly 10% performance improvement in fill* functions |
||
541 | static uint8_t postmask[8] = { 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, |
||
542 | 0x7F }; |
||
543 | register uint8_t mask = postmask[mod]; |
||
544 | if (color == WHITE) { |
||
545 | *pBuf |= mask; |
||
546 | } else { |
||
547 | *pBuf &= ~mask; |
||
548 | } |
||
549 | } |
||
550 | } |
||
551 | |||
552 | /* using Bresenham draw algorithm */ |
||
553 | void drawLine(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color) { |
||
554 | int16_t x, y, |
||
555 | dx, dy, //deltas |
||
556 | dx2, dy2, //scaled deltas |
||
557 | ix, iy, //increase rate on the x and y axis |
||
558 | err; //the error term |
||
559 | uint16_t i; //looping variable |
||
560 | |||
561 | // identify the first pixel |
||
562 | x = x1; |
||
563 | y = y1; |
||
564 | |||
565 | // difference between starting and ending points |
||
566 | dx = x2 - x1; |
||
567 | dy = y2 - y1; |
||
568 | |||
569 | // calculate direction of the vector and store in ix and iy |
||
570 | if (dx >= 0) |
||
571 | ix = 1; |
||
572 | |||
573 | if (dx < 0) { |
||
574 | ix = -1; |
||
575 | dx = abs(dx); |
||
576 | } |
||
577 | |||
578 | if (dy >= 0) |
||
579 | iy = 1; |
||
580 | |||
581 | if (dy < 0) { |
||
582 | iy = -1; |
||
583 | dy = abs(dy); |
||
584 | } |
||
585 | |||
586 | // scale deltas and store in dx2 and dy2 |
||
587 | dx2 = dx * 2; |
||
588 | dy2 = dy * 2; |
||
589 | |||
590 | // all variables are set and it's time to enter the main loop. |
||
591 | |||
592 | if (dx > dy) // dx is the major axis |
||
593 | { |
||
594 | // initialize the error term |
||
595 | err = dy2 - dx; |
||
596 | |||
597 | for (i = 0; i <= dx; i++) { |
||
598 | drawPixel(x, y, color); |
||
599 | if (err >= 0) { |
||
600 | err -= dx2; |
||
601 | y += iy; |
||
602 | } |
||
603 | err += dy2; |
||
604 | x += ix; |
||
605 | } |
||
606 | } |
||
607 | |||
608 | else // dy is the major axis |
||
609 | { |
||
610 | // initialize the error term |
||
611 | err = dx2 - dy; |
||
612 | |||
613 | for (i = 0; i <= dy; i++) { |
||
614 | drawPixel(x, y, color); |
||
615 | if (err >= 0) { |
||
616 | err -= dy2; |
||
617 | x += ix; |
||
618 | } |
||
619 | err += dx2; |
||
620 | y += iy; |
||
621 | } |
||
622 | } |
||
623 | } |