Rev 49 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_dct4_q15.c |
||
9 | * |
||
10 | * Description: Processing function of DCT4 & IDCT4 Q15. |
||
11 | * |
||
12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
13 | * |
||
14 | * Redistribution and use in source and binary forms, with or without |
||
15 | * modification, are permitted provided that the following conditions |
||
16 | * are met: |
||
17 | * - Redistributions of source code must retain the above copyright |
||
18 | * notice, this list of conditions and the following disclaimer. |
||
19 | * - Redistributions in binary form must reproduce the above copyright |
||
20 | * notice, this list of conditions and the following disclaimer in |
||
21 | * the documentation and/or other materials provided with the |
||
22 | * distribution. |
||
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
24 | * may be used to endorse or promote products derived from this |
||
25 | * software without specific prior written permission. |
||
26 | * |
||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
38 | * POSSIBILITY OF SUCH DAMAGE. |
||
39 | * -------------------------------------------------------------------- */ |
||
40 | |||
41 | #include "arm_math.h" |
||
42 | |||
43 | /** |
||
44 | * @addtogroup DCT4_IDCT4 |
||
45 | * @{ |
||
46 | */ |
||
47 | |||
48 | /** |
||
49 | * @brief Processing function for the Q15 DCT4/IDCT4. |
||
50 | * @param[in] *S points to an instance of the Q15 DCT4 structure. |
||
51 | * @param[in] *pState points to state buffer. |
||
52 | * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. |
||
53 | * @return none. |
||
54 | * |
||
55 | * \par Input an output formats: |
||
56 | * Internally inputs are downscaled in the RFFT process function to avoid overflows. |
||
57 | * Number of bits downscaled, depends on the size of the transform. |
||
58 | * The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below: |
||
59 | * |
||
60 | * \image html dct4FormatsQ15Table.gif |
||
61 | */ |
||
62 | |||
63 | void arm_dct4_q15( |
||
64 | const arm_dct4_instance_q15 * S, |
||
65 | q15_t * pState, |
||
66 | q15_t * pInlineBuffer) |
||
67 | { |
||
68 | uint32_t i; /* Loop counter */ |
||
69 | q15_t *weights = S->pTwiddle; /* Pointer to the Weights table */ |
||
70 | q15_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ |
||
71 | q15_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ |
||
72 | q15_t in; /* Temporary variable */ |
||
73 | |||
74 | |||
75 | /* DCT4 computation involves DCT2 (which is calculated using RFFT) |
||
76 | * along with some pre-processing and post-processing. |
||
77 | * Computational procedure is explained as follows: |
||
78 | * (a) Pre-processing involves multiplying input with cos factor, |
||
79 | * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) |
||
80 | * where, |
||
81 | * r(n) -- output of preprocessing |
||
82 | * u(n) -- input to preprocessing(actual Source buffer) |
||
83 | * (b) Calculation of DCT2 using FFT is divided into three steps: |
||
84 | * Step1: Re-ordering of even and odd elements of input. |
||
85 | * Step2: Calculating FFT of the re-ordered input. |
||
86 | * Step3: Taking the real part of the product of FFT output and weights. |
||
87 | * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: |
||
88 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
||
89 | * where, |
||
90 | * Y4 -- DCT4 output, Y2 -- DCT2 output |
||
91 | * (d) Multiplying the output with the normalizing factor sqrt(2/N). |
||
92 | */ |
||
93 | |||
94 | /*-------- Pre-processing ------------*/ |
||
95 | /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ |
||
96 | arm_mult_q15(pInlineBuffer, cosFact, pInlineBuffer, S->N); |
||
97 | arm_shift_q15(pInlineBuffer, 1, pInlineBuffer, S->N); |
||
98 | |||
99 | /* ---------------------------------------------------------------- |
||
100 | * Step1: Re-ordering of even and odd elements as |
||
101 | * pState[i] = pInlineBuffer[2*i] and |
||
102 | * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 |
||
103 | ---------------------------------------------------------------------*/ |
||
104 | |||
105 | /* pS1 initialized to pState */ |
||
106 | pS1 = pState; |
||
107 | |||
108 | /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ |
||
109 | pS2 = pState + (S->N - 1u); |
||
110 | |||
111 | /* pbuff initialized to input buffer */ |
||
112 | pbuff = pInlineBuffer; |
||
113 | |||
114 | |||
115 | #ifndef ARM_MATH_CM0_FAMILY |
||
116 | |||
117 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
118 | |||
119 | /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ |
||
120 | i = (uint32_t) S->Nby2 >> 2u; |
||
121 | |||
122 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
||
123 | ** a second loop below computes the remaining 1 to 3 samples. */ |
||
124 | do |
||
125 | { |
||
126 | /* Re-ordering of even and odd elements */ |
||
127 | /* pState[i] = pInlineBuffer[2*i] */ |
||
128 | *pS1++ = *pbuff++; |
||
129 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
||
130 | *pS2-- = *pbuff++; |
||
131 | |||
132 | *pS1++ = *pbuff++; |
||
133 | *pS2-- = *pbuff++; |
||
134 | |||
135 | *pS1++ = *pbuff++; |
||
136 | *pS2-- = *pbuff++; |
||
137 | |||
138 | *pS1++ = *pbuff++; |
||
139 | *pS2-- = *pbuff++; |
||
140 | |||
141 | /* Decrement the loop counter */ |
||
142 | i--; |
||
143 | } while(i > 0u); |
||
144 | |||
145 | /* pbuff initialized to input buffer */ |
||
146 | pbuff = pInlineBuffer; |
||
147 | |||
148 | /* pS1 initialized to pState */ |
||
149 | pS1 = pState; |
||
150 | |||
151 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
||
152 | i = (uint32_t) S->N >> 2u; |
||
153 | |||
154 | /* Processing with loop unrolling 4 times as N is always multiple of 4. |
||
155 | * Compute 4 outputs at a time */ |
||
156 | do |
||
157 | { |
||
158 | /* Writing the re-ordered output back to inplace input buffer */ |
||
159 | *pbuff++ = *pS1++; |
||
160 | *pbuff++ = *pS1++; |
||
161 | *pbuff++ = *pS1++; |
||
162 | *pbuff++ = *pS1++; |
||
163 | |||
164 | /* Decrement the loop counter */ |
||
165 | i--; |
||
166 | } while(i > 0u); |
||
167 | |||
168 | |||
169 | /* --------------------------------------------------------- |
||
170 | * Step2: Calculate RFFT for N-point input |
||
171 | * ---------------------------------------------------------- */ |
||
172 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
||
173 | arm_rfft_q15(S->pRfft, pInlineBuffer, pState); |
||
174 | |||
175 | /*---------------------------------------------------------------------- |
||
176 | * Step3: Multiply the FFT output with the weights. |
||
177 | *----------------------------------------------------------------------*/ |
||
178 | arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); |
||
179 | |||
180 | /* The output of complex multiplication is in 3.13 format. |
||
181 | * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ |
||
182 | arm_shift_q15(pState, 2, pState, S->N * 2); |
||
183 | |||
184 | /* ----------- Post-processing ---------- */ |
||
185 | /* DCT-IV can be obtained from DCT-II by the equation, |
||
186 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
||
187 | * Hence, Y4(0) = Y2(0)/2 */ |
||
188 | /* Getting only real part from the output and Converting to DCT-IV */ |
||
189 | |||
190 | /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ |
||
191 | i = ((uint32_t) S->N - 1u) >> 2u; |
||
192 | |||
193 | /* pbuff initialized to input buffer. */ |
||
194 | pbuff = pInlineBuffer; |
||
195 | |||
196 | /* pS1 initialized to pState */ |
||
197 | pS1 = pState; |
||
198 | |||
199 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
||
200 | in = *pS1++ >> 1u; |
||
201 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
||
202 | *pbuff++ = in; |
||
203 | |||
204 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
||
205 | pS1++; |
||
206 | |||
207 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
||
208 | ** a second loop below computes the remaining 1 to 3 samples. */ |
||
209 | do |
||
210 | { |
||
211 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
||
212 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
||
213 | in = *pS1++ - in; |
||
214 | *pbuff++ = in; |
||
215 | /* points to the next real value */ |
||
216 | pS1++; |
||
217 | |||
218 | in = *pS1++ - in; |
||
219 | *pbuff++ = in; |
||
220 | pS1++; |
||
221 | |||
222 | in = *pS1++ - in; |
||
223 | *pbuff++ = in; |
||
224 | pS1++; |
||
225 | |||
226 | in = *pS1++ - in; |
||
227 | *pbuff++ = in; |
||
228 | pS1++; |
||
229 | |||
230 | /* Decrement the loop counter */ |
||
231 | i--; |
||
232 | } while(i > 0u); |
||
233 | |||
234 | /* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
||
235 | ** No loop unrolling is used. */ |
||
236 | i = ((uint32_t) S->N - 1u) % 0x4u; |
||
237 | |||
238 | while(i > 0u) |
||
239 | { |
||
240 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
||
241 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
||
242 | in = *pS1++ - in; |
||
243 | *pbuff++ = in; |
||
244 | /* points to the next real value */ |
||
245 | pS1++; |
||
246 | |||
247 | /* Decrement the loop counter */ |
||
248 | i--; |
||
249 | } |
||
250 | |||
251 | |||
252 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
||
253 | |||
254 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
||
255 | i = (uint32_t) S->N >> 2u; |
||
256 | |||
257 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
||
258 | pbuff = pInlineBuffer; |
||
259 | |||
260 | /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ |
||
261 | do |
||
262 | { |
||
263 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
||
264 | in = *pbuff; |
||
265 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
266 | |||
267 | in = *pbuff; |
||
268 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
269 | |||
270 | in = *pbuff; |
||
271 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
272 | |||
273 | in = *pbuff; |
||
274 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
275 | |||
276 | /* Decrement the loop counter */ |
||
277 | i--; |
||
278 | } while(i > 0u); |
||
279 | |||
280 | |||
281 | #else |
||
282 | |||
283 | /* Run the below code for Cortex-M0 */ |
||
284 | |||
285 | /* Initializing the loop counter to N/2 */ |
||
286 | i = (uint32_t) S->Nby2; |
||
287 | |||
288 | do |
||
289 | { |
||
290 | /* Re-ordering of even and odd elements */ |
||
291 | /* pState[i] = pInlineBuffer[2*i] */ |
||
292 | *pS1++ = *pbuff++; |
||
293 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
||
294 | *pS2-- = *pbuff++; |
||
295 | |||
296 | /* Decrement the loop counter */ |
||
297 | i--; |
||
298 | } while(i > 0u); |
||
299 | |||
300 | /* pbuff initialized to input buffer */ |
||
301 | pbuff = pInlineBuffer; |
||
302 | |||
303 | /* pS1 initialized to pState */ |
||
304 | pS1 = pState; |
||
305 | |||
306 | /* Initializing the loop counter */ |
||
307 | i = (uint32_t) S->N; |
||
308 | |||
309 | do |
||
310 | { |
||
311 | /* Writing the re-ordered output back to inplace input buffer */ |
||
312 | *pbuff++ = *pS1++; |
||
313 | |||
314 | /* Decrement the loop counter */ |
||
315 | i--; |
||
316 | } while(i > 0u); |
||
317 | |||
318 | |||
319 | /* --------------------------------------------------------- |
||
320 | * Step2: Calculate RFFT for N-point input |
||
321 | * ---------------------------------------------------------- */ |
||
322 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
||
323 | arm_rfft_q15(S->pRfft, pInlineBuffer, pState); |
||
324 | |||
325 | /*---------------------------------------------------------------------- |
||
326 | * Step3: Multiply the FFT output with the weights. |
||
327 | *----------------------------------------------------------------------*/ |
||
328 | arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); |
||
329 | |||
330 | /* The output of complex multiplication is in 3.13 format. |
||
331 | * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ |
||
332 | arm_shift_q15(pState, 2, pState, S->N * 2); |
||
333 | |||
334 | /* ----------- Post-processing ---------- */ |
||
335 | /* DCT-IV can be obtained from DCT-II by the equation, |
||
336 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
||
337 | * Hence, Y4(0) = Y2(0)/2 */ |
||
338 | /* Getting only real part from the output and Converting to DCT-IV */ |
||
339 | |||
340 | /* Initializing the loop counter */ |
||
341 | i = ((uint32_t) S->N - 1u); |
||
342 | |||
343 | /* pbuff initialized to input buffer. */ |
||
344 | pbuff = pInlineBuffer; |
||
345 | |||
346 | /* pS1 initialized to pState */ |
||
347 | pS1 = pState; |
||
348 | |||
349 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
||
350 | in = *pS1++ >> 1u; |
||
351 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
||
352 | *pbuff++ = in; |
||
353 | |||
354 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
||
355 | pS1++; |
||
356 | |||
357 | do |
||
358 | { |
||
359 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
||
360 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
||
361 | in = *pS1++ - in; |
||
362 | *pbuff++ = in; |
||
363 | /* points to the next real value */ |
||
364 | pS1++; |
||
365 | |||
366 | /* Decrement the loop counter */ |
||
367 | i--; |
||
368 | } while(i > 0u); |
||
369 | |||
370 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
||
371 | |||
372 | /* Initializing the loop counter */ |
||
373 | i = (uint32_t) S->N; |
||
374 | |||
375 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
||
376 | pbuff = pInlineBuffer; |
||
377 | |||
378 | do |
||
379 | { |
||
380 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
||
381 | in = *pbuff; |
||
382 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
383 | |||
384 | /* Decrement the loop counter */ |
||
385 | i--; |
||
386 | } while(i > 0u); |
||
387 | |||
388 | #endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
||
389 | |||
390 | } |
||
391 | |||
392 | /** |
||
393 | * @} end of DCT4_IDCT4 group |
||
394 | */ |