Rev 56 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 56 | mjames | 1 | /****************************************************************************** |
| 2 | * @file arm_math.h |
||
| 3 | * @brief Public header file for CMSIS DSP LibraryU |
||
| 4 | * @version V1.5.3 |
||
| 5 | * @date 10. January 2018 |
||
| 6 | ******************************************************************************/ |
||
| 7 | /* |
||
| 8 | * Copyright (c) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
| 9 | * |
||
| 10 | * SPDX-License-Identifier: Apache-2.0 |
||
| 11 | * |
||
| 12 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
| 13 | * not use this file except in compliance with the License. |
||
| 14 | * You may obtain a copy of the License at |
||
| 15 | * |
||
| 16 | * www.apache.org/licenses/LICENSE-2.0 |
||
| 17 | * |
||
| 18 | * Unless required by applicable law or agreed to in writing, software |
||
| 19 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
| 20 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
| 21 | * See the License for the specific language governing permissions and |
||
| 22 | * limitations under the License. |
||
| 23 | */ |
||
| 24 | |||
| 25 | /** |
||
| 26 | \mainpage CMSIS DSP Software Library |
||
| 27 | * |
||
| 28 | * Introduction |
||
| 29 | * ------------ |
||
| 30 | * |
||
| 31 | * This user manual describes the CMSIS DSP software library, |
||
| 32 | * a suite of common signal processing functions for use on Cortex-M processor based devices. |
||
| 33 | * |
||
| 34 | * The library is divided into a number of functions each covering a specific category: |
||
| 35 | * - Basic math functions |
||
| 36 | * - Fast math functions |
||
| 37 | * - Complex math functions |
||
| 38 | * - Filters |
||
| 39 | * - Matrix functions |
||
| 40 | * - Transforms |
||
| 41 | * - Motor control functions |
||
| 42 | * - Statistical functions |
||
| 43 | * - Support functions |
||
| 44 | * - Interpolation functions |
||
| 45 | * |
||
| 46 | * The library has separate functions for operating on 8-bit integers, 16-bit integers, |
||
| 47 | * 32-bit integer and 32-bit floating-point values. |
||
| 48 | * |
||
| 49 | * Using the Library |
||
| 50 | * ------------ |
||
| 51 | * |
||
| 52 | * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. |
||
| 53 | * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit) |
||
| 54 | * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit) |
||
| 55 | * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit) |
||
| 56 | * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on) |
||
| 57 | * - arm_cortexM7l_math.lib (Cortex-M7, Little endian) |
||
| 58 | * - arm_cortexM7b_math.lib (Cortex-M7, Big endian) |
||
| 59 | * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit) |
||
| 60 | * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit) |
||
| 61 | * - arm_cortexM4l_math.lib (Cortex-M4, Little endian) |
||
| 62 | * - arm_cortexM4b_math.lib (Cortex-M4, Big endian) |
||
| 63 | * - arm_cortexM3l_math.lib (Cortex-M3, Little endian) |
||
| 64 | * - arm_cortexM3b_math.lib (Cortex-M3, Big endian) |
||
| 65 | * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian) |
||
| 66 | * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian) |
||
| 67 | * - arm_ARMv8MBLl_math.lib (Armv8-M Baseline, Little endian) |
||
| 68 | * - arm_ARMv8MMLl_math.lib (Armv8-M Mainline, Little endian) |
||
| 69 | * - arm_ARMv8MMLlfsp_math.lib (Armv8-M Mainline, Little endian, Single Precision Floating Point Unit) |
||
| 70 | * - arm_ARMv8MMLld_math.lib (Armv8-M Mainline, Little endian, DSP instructions) |
||
| 71 | * - arm_ARMv8MMLldfsp_math.lib (Armv8-M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit) |
||
| 72 | * |
||
| 73 | * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. |
||
| 74 | * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single |
||
| 75 | * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. |
||
| 76 | * Define the appropriate preprocessor macro ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or |
||
| 77 | * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. |
||
| 78 | * For Armv8-M cores define preprocessor macro ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML. |
||
| 79 | * Set preprocessor macro __DSP_PRESENT if Armv8-M Mainline core supports DSP instructions. |
||
| 80 | * |
||
| 81 | * |
||
| 82 | * Examples |
||
| 83 | * -------- |
||
| 84 | * |
||
| 85 | * The library ships with a number of examples which demonstrate how to use the library functions. |
||
| 86 | * |
||
| 87 | * Toolchain Support |
||
| 88 | * ------------ |
||
| 89 | * |
||
| 90 | * The library has been developed and tested with MDK version 5.14.0.0 |
||
| 91 | * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. |
||
| 92 | * |
||
| 93 | * Building the Library |
||
| 94 | * ------------ |
||
| 95 | * |
||
| 96 | * The library installer contains a project file to rebuild libraries on MDK toolchain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. |
||
| 97 | * - arm_cortexM_math.uvprojx |
||
| 98 | * |
||
| 99 | * |
||
| 100 | * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional preprocessor macros detailed above. |
||
| 101 | * |
||
| 102 | * Preprocessor Macros |
||
| 103 | * ------------ |
||
| 104 | * |
||
| 105 | * Each library project have different preprocessor macros. |
||
| 106 | * |
||
| 107 | * - UNALIGNED_SUPPORT_DISABLE: |
||
| 108 | * |
||
| 109 | * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access |
||
| 110 | * |
||
| 111 | * - ARM_MATH_BIG_ENDIAN: |
||
| 112 | * |
||
| 113 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
||
| 114 | * |
||
| 115 | * - ARM_MATH_MATRIX_CHECK: |
||
| 116 | * |
||
| 117 | * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices |
||
| 118 | * |
||
| 119 | * - ARM_MATH_ROUNDING: |
||
| 120 | * |
||
| 121 | * Define macro ARM_MATH_ROUNDING for rounding on support functions |
||
| 122 | * |
||
| 123 | * - ARM_MATH_CMx: |
||
| 124 | * |
||
| 125 | * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target |
||
| 126 | * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and |
||
| 127 | * ARM_MATH_CM7 for building the library on cortex-M7. |
||
| 128 | * |
||
| 129 | * - ARM_MATH_ARMV8MxL: |
||
| 130 | * |
||
| 131 | * Define macro ARM_MATH_ARMV8MBL for building the library on Armv8-M Baseline target, ARM_MATH_ARMV8MML for building library |
||
| 132 | * on Armv8-M Mainline target. |
||
| 133 | * |
||
| 134 | * - __FPU_PRESENT: |
||
| 135 | * |
||
| 136 | * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries. |
||
| 137 | * |
||
| 138 | * - __DSP_PRESENT: |
||
| 139 | * |
||
| 140 | * Initialize macro __DSP_PRESENT = 1 when Armv8-M Mainline core supports DSP instructions. |
||
| 141 | * |
||
| 142 | * <hr> |
||
| 143 | * CMSIS-DSP in ARM::CMSIS Pack |
||
| 144 | * ----------------------------- |
||
| 145 | * |
||
| 146 | * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: |
||
| 147 | * |File/Folder |Content | |
||
| 148 | * |------------------------------|------------------------------------------------------------------------| |
||
| 149 | * |\b CMSIS\\Documentation\\DSP | This documentation | |
||
| 150 | * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | |
||
| 151 | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | |
||
| 152 | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | |
||
| 153 | * |
||
| 154 | * <hr> |
||
| 155 | * Revision History of CMSIS-DSP |
||
| 156 | * ------------ |
||
| 157 | * Please refer to \ref ChangeLog_pg. |
||
| 158 | * |
||
| 159 | * Copyright Notice |
||
| 160 | * ------------ |
||
| 161 | * |
||
| 162 | * Copyright (C) 2010-2015 Arm Limited. All rights reserved. |
||
| 163 | */ |
||
| 164 | |||
| 165 | |||
| 166 | /** |
||
| 167 | * @defgroup groupMath Basic Math Functions |
||
| 168 | */ |
||
| 169 | |||
| 170 | /** |
||
| 171 | * @defgroup groupFastMath Fast Math Functions |
||
| 172 | * This set of functions provides a fast approximation to sine, cosine, and square root. |
||
| 173 | * As compared to most of the other functions in the CMSIS math library, the fast math functions |
||
| 174 | * operate on individual values and not arrays. |
||
| 175 | * There are separate functions for Q15, Q31, and floating-point data. |
||
| 176 | * |
||
| 177 | */ |
||
| 178 | |||
| 179 | /** |
||
| 180 | * @defgroup groupCmplxMath Complex Math Functions |
||
| 181 | * This set of functions operates on complex data vectors. |
||
| 182 | * The data in the complex arrays is stored in an interleaved fashion |
||
| 183 | * (real, imag, real, imag, ...). |
||
| 184 | * In the API functions, the number of samples in a complex array refers |
||
| 185 | * to the number of complex values; the array contains twice this number of |
||
| 186 | * real values. |
||
| 187 | */ |
||
| 188 | |||
| 189 | /** |
||
| 190 | * @defgroup groupFilters Filtering Functions |
||
| 191 | */ |
||
| 192 | |||
| 193 | /** |
||
| 194 | * @defgroup groupMatrix Matrix Functions |
||
| 195 | * |
||
| 196 | * This set of functions provides basic matrix math operations. |
||
| 197 | * The functions operate on matrix data structures. For example, |
||
| 198 | * the type |
||
| 199 | * definition for the floating-point matrix structure is shown |
||
| 200 | * below: |
||
| 201 | * <pre> |
||
| 202 | * typedef struct |
||
| 203 | * { |
||
| 204 | * uint16_t numRows; // number of rows of the matrix. |
||
| 205 | * uint16_t numCols; // number of columns of the matrix. |
||
| 206 | * float32_t *pData; // points to the data of the matrix. |
||
| 207 | * } arm_matrix_instance_f32; |
||
| 208 | * </pre> |
||
| 209 | * There are similar definitions for Q15 and Q31 data types. |
||
| 210 | * |
||
| 211 | * The structure specifies the size of the matrix and then points to |
||
| 212 | * an array of data. The array is of size <code>numRows X numCols</code> |
||
| 213 | * and the values are arranged in row order. That is, the |
||
| 214 | * matrix element (i, j) is stored at: |
||
| 215 | * <pre> |
||
| 216 | * pData[i*numCols + j] |
||
| 217 | * </pre> |
||
| 218 | * |
||
| 219 | * \par Init Functions |
||
| 220 | * There is an associated initialization function for each type of matrix |
||
| 221 | * data structure. |
||
| 222 | * The initialization function sets the values of the internal structure fields. |
||
| 223 | * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> |
||
| 224 | * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. |
||
| 225 | * |
||
| 226 | * \par |
||
| 227 | * Use of the initialization function is optional. However, if initialization function is used |
||
| 228 | * then the instance structure cannot be placed into a const data section. |
||
| 229 | * To place the instance structure in a const data |
||
| 230 | * section, manually initialize the data structure. For example: |
||
| 231 | * <pre> |
||
| 232 | * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> |
||
| 233 | * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> |
||
| 234 | * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> |
||
| 235 | * </pre> |
||
| 236 | * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> |
||
| 237 | * specifies the number of columns, and <code>pData</code> points to the |
||
| 238 | * data array. |
||
| 239 | * |
||
| 240 | * \par Size Checking |
||
| 241 | * By default all of the matrix functions perform size checking on the input and |
||
| 242 | * output matrices. For example, the matrix addition function verifies that the |
||
| 243 | * two input matrices and the output matrix all have the same number of rows and |
||
| 244 | * columns. If the size check fails the functions return: |
||
| 245 | * <pre> |
||
| 246 | * ARM_MATH_SIZE_MISMATCH |
||
| 247 | * </pre> |
||
| 248 | * Otherwise the functions return |
||
| 249 | * <pre> |
||
| 250 | * ARM_MATH_SUCCESS |
||
| 251 | * </pre> |
||
| 252 | * There is some overhead associated with this matrix size checking. |
||
| 253 | * The matrix size checking is enabled via the \#define |
||
| 254 | * <pre> |
||
| 255 | * ARM_MATH_MATRIX_CHECK |
||
| 256 | * </pre> |
||
| 257 | * within the library project settings. By default this macro is defined |
||
| 258 | * and size checking is enabled. By changing the project settings and |
||
| 259 | * undefining this macro size checking is eliminated and the functions |
||
| 260 | * run a bit faster. With size checking disabled the functions always |
||
| 261 | * return <code>ARM_MATH_SUCCESS</code>. |
||
| 262 | */ |
||
| 263 | |||
| 264 | /** |
||
| 265 | * @defgroup groupTransforms Transform Functions |
||
| 266 | */ |
||
| 267 | |||
| 268 | /** |
||
| 269 | * @defgroup groupController Controller Functions |
||
| 270 | */ |
||
| 271 | |||
| 272 | /** |
||
| 273 | * @defgroup groupStats Statistics Functions |
||
| 274 | */ |
||
| 275 | /** |
||
| 276 | * @defgroup groupSupport Support Functions |
||
| 277 | */ |
||
| 278 | |||
| 279 | /** |
||
| 280 | * @defgroup groupInterpolation Interpolation Functions |
||
| 281 | * These functions perform 1- and 2-dimensional interpolation of data. |
||
| 282 | * Linear interpolation is used for 1-dimensional data and |
||
| 283 | * bilinear interpolation is used for 2-dimensional data. |
||
| 284 | */ |
||
| 285 | |||
| 286 | /** |
||
| 287 | * @defgroup groupExamples Examples |
||
| 288 | */ |
||
| 289 | #ifndef _ARM_MATH_H |
||
| 290 | #define _ARM_MATH_H |
||
| 291 | |||
| 292 | /* Compiler specific diagnostic adjustment */ |
||
| 293 | #if defined ( __CC_ARM ) |
||
| 294 | |||
| 295 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
| 296 | |||
| 297 | #elif defined ( __GNUC__ ) |
||
| 298 | #pragma GCC diagnostic push |
||
| 299 | #pragma GCC diagnostic ignored "-Wsign-conversion" |
||
| 300 | #pragma GCC diagnostic ignored "-Wconversion" |
||
| 301 | #pragma GCC diagnostic ignored "-Wunused-parameter" |
||
| 302 | |||
| 303 | #elif defined ( __ICCARM__ ) |
||
| 304 | |||
| 305 | #elif defined ( __TI_ARM__ ) |
||
| 306 | |||
| 307 | #elif defined ( __CSMC__ ) |
||
| 308 | |||
| 309 | #elif defined ( __TASKING__ ) |
||
| 310 | |||
| 311 | #else |
||
| 312 | #error Unknown compiler |
||
| 313 | #endif |
||
| 314 | |||
| 315 | |||
| 316 | #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ |
||
| 317 | |||
| 318 | #if defined(ARM_MATH_CM7) |
||
| 319 | #include "core_cm7.h" |
||
| 320 | #define ARM_MATH_DSP |
||
| 321 | #elif defined (ARM_MATH_CM4) |
||
| 322 | #include "core_cm4.h" |
||
| 323 | #define ARM_MATH_DSP |
||
| 324 | #elif defined (ARM_MATH_CM3) |
||
| 325 | #include "core_cm3.h" |
||
| 326 | #elif defined (ARM_MATH_CM0) |
||
| 327 | #include "core_cm0.h" |
||
| 328 | #define ARM_MATH_CM0_FAMILY |
||
| 329 | #elif defined (ARM_MATH_CM0PLUS) |
||
| 330 | #include "core_cm0plus.h" |
||
| 331 | #define ARM_MATH_CM0_FAMILY |
||
| 332 | #elif defined (ARM_MATH_ARMV8MBL) |
||
| 333 | #include "core_armv8mbl.h" |
||
| 334 | #define ARM_MATH_CM0_FAMILY |
||
| 335 | #elif defined (ARM_MATH_ARMV8MML) |
||
| 336 | #include "core_armv8mml.h" |
||
| 337 | #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1)) |
||
| 338 | #define ARM_MATH_DSP |
||
| 339 | #endif |
||
| 340 | #else |
||
| 341 | #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML" |
||
| 342 | #endif |
||
| 343 | |||
| 344 | #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ |
||
| 345 | #include "string.h" |
||
| 346 | #include "math.h" |
||
| 347 | #ifdef __cplusplus |
||
| 348 | extern "C" |
||
| 349 | { |
||
| 350 | #endif |
||
| 351 | |||
| 352 | |||
| 353 | /** |
||
| 354 | * @brief Macros required for reciprocal calculation in Normalized LMS |
||
| 355 | */ |
||
| 356 | |||
| 357 | #define DELTA_Q31 (0x100) |
||
| 358 | #define DELTA_Q15 0x5 |
||
| 359 | #define INDEX_MASK 0x0000003F |
||
| 360 | #ifndef PI |
||
| 361 | #define PI 3.14159265358979f |
||
| 362 | #endif |
||
| 363 | |||
| 364 | /** |
||
| 365 | * @brief Macros required for SINE and COSINE Fast math approximations |
||
| 366 | */ |
||
| 367 | |||
| 368 | #define FAST_MATH_TABLE_SIZE 512 |
||
| 369 | #define FAST_MATH_Q31_SHIFT (32 - 10) |
||
| 370 | #define FAST_MATH_Q15_SHIFT (16 - 10) |
||
| 371 | #define CONTROLLER_Q31_SHIFT (32 - 9) |
||
| 372 | #define TABLE_SPACING_Q31 0x400000 |
||
| 373 | #define TABLE_SPACING_Q15 0x80 |
||
| 374 | |||
| 375 | /** |
||
| 376 | * @brief Macros required for SINE and COSINE Controller functions |
||
| 377 | */ |
||
| 378 | /* 1.31(q31) Fixed value of 2/360 */ |
||
| 379 | /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ |
||
| 380 | #define INPUT_SPACING 0xB60B61 |
||
| 381 | |||
| 382 | /** |
||
| 383 | * @brief Macro for Unaligned Support |
||
| 384 | */ |
||
| 385 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
| 386 | #define ALIGN4 |
||
| 387 | #else |
||
| 388 | #if defined (__GNUC__) |
||
| 389 | #define ALIGN4 __attribute__((aligned(4))) |
||
| 390 | #else |
||
| 391 | #define ALIGN4 __align(4) |
||
| 392 | #endif |
||
| 393 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
||
| 394 | |||
| 395 | /** |
||
| 396 | * @brief Error status returned by some functions in the library. |
||
| 397 | */ |
||
| 398 | |||
| 399 | typedef enum |
||
| 400 | { |
||
| 401 | ARM_MATH_SUCCESS = 0, /**< No error */ |
||
| 402 | ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ |
||
| 403 | ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ |
||
| 404 | ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ |
||
| 405 | ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ |
||
| 406 | ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ |
||
| 407 | ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ |
||
| 408 | } arm_status; |
||
| 409 | |||
| 410 | /** |
||
| 411 | * @brief 8-bit fractional data type in 1.7 format. |
||
| 412 | */ |
||
| 413 | typedef int8_t q7_t; |
||
| 414 | |||
| 415 | /** |
||
| 416 | * @brief 16-bit fractional data type in 1.15 format. |
||
| 417 | */ |
||
| 418 | typedef int16_t q15_t; |
||
| 419 | |||
| 420 | /** |
||
| 421 | * @brief 32-bit fractional data type in 1.31 format. |
||
| 422 | */ |
||
| 423 | typedef int32_t q31_t; |
||
| 424 | |||
| 425 | /** |
||
| 426 | * @brief 64-bit fractional data type in 1.63 format. |
||
| 427 | */ |
||
| 428 | typedef int64_t q63_t; |
||
| 429 | |||
| 430 | /** |
||
| 431 | * @brief 32-bit floating-point type definition. |
||
| 432 | */ |
||
| 433 | typedef float float32_t; |
||
| 434 | |||
| 435 | /** |
||
| 436 | * @brief 64-bit floating-point type definition. |
||
| 437 | */ |
||
| 438 | typedef double float64_t; |
||
| 439 | |||
| 440 | /** |
||
| 441 | * @brief definition to read/write two 16 bit values. |
||
| 442 | */ |
||
| 443 | #if defined ( __CC_ARM ) |
||
| 444 | #define __SIMD32_TYPE int32_t __packed |
||
| 445 | #define CMSIS_UNUSED __attribute__((unused)) |
||
| 446 | #define CMSIS_INLINE __attribute__((always_inline)) |
||
| 447 | |||
| 448 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
| 449 | #define __SIMD32_TYPE int32_t |
||
| 450 | #define CMSIS_UNUSED __attribute__((unused)) |
||
| 451 | #define CMSIS_INLINE __attribute__((always_inline)) |
||
| 452 | |||
| 453 | #elif defined ( __GNUC__ ) |
||
| 454 | #define __SIMD32_TYPE int32_t |
||
| 455 | #define CMSIS_UNUSED __attribute__((unused)) |
||
| 456 | #define CMSIS_INLINE __attribute__((always_inline)) |
||
| 457 | |||
| 458 | #elif defined ( __ICCARM__ ) |
||
| 459 | #define __SIMD32_TYPE int32_t __packed |
||
| 460 | #define CMSIS_UNUSED |
||
| 461 | #define CMSIS_INLINE |
||
| 462 | |||
| 463 | #elif defined ( __TI_ARM__ ) |
||
| 464 | #define __SIMD32_TYPE int32_t |
||
| 465 | #define CMSIS_UNUSED __attribute__((unused)) |
||
| 466 | #define CMSIS_INLINE |
||
| 467 | |||
| 468 | #elif defined ( __CSMC__ ) |
||
| 469 | #define __SIMD32_TYPE int32_t |
||
| 470 | #define CMSIS_UNUSED |
||
| 471 | #define CMSIS_INLINE |
||
| 472 | |||
| 473 | #elif defined ( __TASKING__ ) |
||
| 474 | #define __SIMD32_TYPE __unaligned int32_t |
||
| 475 | #define CMSIS_UNUSED |
||
| 476 | #define CMSIS_INLINE |
||
| 477 | |||
| 478 | #else |
||
| 479 | #error Unknown compiler |
||
| 480 | #endif |
||
| 481 | |||
| 482 | #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) |
||
| 483 | #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) |
||
| 484 | #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) |
||
| 485 | #define __SIMD64(addr) (*(int64_t **) & (addr)) |
||
| 486 | |||
| 487 | #if !defined (ARM_MATH_DSP) |
||
| 488 | /** |
||
| 489 | * @brief definition to pack two 16 bit values. |
||
| 490 | */ |
||
| 491 | #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ |
||
| 492 | (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) |
||
| 493 | #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ |
||
| 494 | (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) |
||
| 495 | |||
| 496 | #endif /* !defined (ARM_MATH_DSP) */ |
||
| 497 | |||
| 498 | /** |
||
| 499 | * @brief definition to pack four 8 bit values. |
||
| 500 | */ |
||
| 501 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 502 | |||
| 503 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ |
||
| 504 | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ |
||
| 505 | (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ |
||
| 506 | (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) |
||
| 507 | #else |
||
| 508 | |||
| 509 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ |
||
| 510 | (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ |
||
| 511 | (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ |
||
| 512 | (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) |
||
| 513 | |||
| 514 | #endif |
||
| 515 | |||
| 516 | |||
| 517 | /** |
||
| 518 | * @brief Clips Q63 to Q31 values. |
||
| 519 | */ |
||
| 520 | CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31( |
||
| 521 | q63_t x) |
||
| 522 | { |
||
| 523 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
| 524 | ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; |
||
| 525 | } |
||
| 526 | |||
| 527 | /** |
||
| 528 | * @brief Clips Q63 to Q15 values. |
||
| 529 | */ |
||
| 530 | CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15( |
||
| 531 | q63_t x) |
||
| 532 | { |
||
| 533 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
| 534 | ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); |
||
| 535 | } |
||
| 536 | |||
| 537 | /** |
||
| 538 | * @brief Clips Q31 to Q7 values. |
||
| 539 | */ |
||
| 540 | CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7( |
||
| 541 | q31_t x) |
||
| 542 | { |
||
| 543 | return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? |
||
| 544 | ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; |
||
| 545 | } |
||
| 546 | |||
| 547 | /** |
||
| 548 | * @brief Clips Q31 to Q15 values. |
||
| 549 | */ |
||
| 550 | CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15( |
||
| 551 | q31_t x) |
||
| 552 | { |
||
| 553 | return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? |
||
| 554 | ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; |
||
| 555 | } |
||
| 556 | |||
| 557 | /** |
||
| 558 | * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. |
||
| 559 | */ |
||
| 560 | |||
| 561 | CMSIS_INLINE __STATIC_INLINE q63_t mult32x64( |
||
| 562 | q63_t x, |
||
| 563 | q31_t y) |
||
| 564 | { |
||
| 565 | return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + |
||
| 566 | (((q63_t) (x >> 32) * y))); |
||
| 567 | } |
||
| 568 | |||
| 569 | /** |
||
| 570 | * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. |
||
| 571 | */ |
||
| 572 | |||
| 573 | CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31( |
||
| 574 | q31_t in, |
||
| 575 | q31_t * dst, |
||
| 576 | q31_t * pRecipTable) |
||
| 577 | { |
||
| 578 | q31_t out; |
||
| 579 | uint32_t tempVal; |
||
| 580 | uint32_t index, i; |
||
| 581 | uint32_t signBits; |
||
| 582 | |||
| 583 | if (in > 0) |
||
| 584 | { |
||
| 585 | signBits = ((uint32_t) (__CLZ( in) - 1)); |
||
| 586 | } |
||
| 587 | else |
||
| 588 | { |
||
| 589 | signBits = ((uint32_t) (__CLZ(-in) - 1)); |
||
| 590 | } |
||
| 591 | |||
| 592 | /* Convert input sample to 1.31 format */ |
||
| 593 | in = (in << signBits); |
||
| 594 | |||
| 595 | /* calculation of index for initial approximated Val */ |
||
| 596 | index = (uint32_t)(in >> 24); |
||
| 597 | index = (index & INDEX_MASK); |
||
| 598 | |||
| 599 | /* 1.31 with exp 1 */ |
||
| 600 | out = pRecipTable[index]; |
||
| 601 | |||
| 602 | /* calculation of reciprocal value */ |
||
| 603 | /* running approximation for two iterations */ |
||
| 604 | for (i = 0U; i < 2U; i++) |
||
| 605 | { |
||
| 606 | tempVal = (uint32_t) (((q63_t) in * out) >> 31); |
||
| 607 | tempVal = 0x7FFFFFFFu - tempVal; |
||
| 608 | /* 1.31 with exp 1 */ |
||
| 609 | /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ |
||
| 610 | out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); |
||
| 611 | } |
||
| 612 | |||
| 613 | /* write output */ |
||
| 614 | *dst = out; |
||
| 615 | |||
| 616 | /* return num of signbits of out = 1/in value */ |
||
| 617 | return (signBits + 1U); |
||
| 618 | } |
||
| 619 | |||
| 620 | |||
| 621 | /** |
||
| 622 | * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. |
||
| 623 | */ |
||
| 624 | CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15( |
||
| 625 | q15_t in, |
||
| 626 | q15_t * dst, |
||
| 627 | q15_t * pRecipTable) |
||
| 628 | { |
||
| 629 | q15_t out = 0; |
||
| 630 | uint32_t tempVal = 0; |
||
| 631 | uint32_t index = 0, i = 0; |
||
| 632 | uint32_t signBits = 0; |
||
| 633 | |||
| 634 | if (in > 0) |
||
| 635 | { |
||
| 636 | signBits = ((uint32_t)(__CLZ( in) - 17)); |
||
| 637 | } |
||
| 638 | else |
||
| 639 | { |
||
| 640 | signBits = ((uint32_t)(__CLZ(-in) - 17)); |
||
| 641 | } |
||
| 642 | |||
| 643 | /* Convert input sample to 1.15 format */ |
||
| 644 | in = (in << signBits); |
||
| 645 | |||
| 646 | /* calculation of index for initial approximated Val */ |
||
| 647 | index = (uint32_t)(in >> 8); |
||
| 648 | index = (index & INDEX_MASK); |
||
| 649 | |||
| 650 | /* 1.15 with exp 1 */ |
||
| 651 | out = pRecipTable[index]; |
||
| 652 | |||
| 653 | /* calculation of reciprocal value */ |
||
| 654 | /* running approximation for two iterations */ |
||
| 655 | for (i = 0U; i < 2U; i++) |
||
| 656 | { |
||
| 657 | tempVal = (uint32_t) (((q31_t) in * out) >> 15); |
||
| 658 | tempVal = 0x7FFFu - tempVal; |
||
| 659 | /* 1.15 with exp 1 */ |
||
| 660 | out = (q15_t) (((q31_t) out * tempVal) >> 14); |
||
| 661 | /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ |
||
| 662 | } |
||
| 663 | |||
| 664 | /* write output */ |
||
| 665 | *dst = out; |
||
| 666 | |||
| 667 | /* return num of signbits of out = 1/in value */ |
||
| 668 | return (signBits + 1); |
||
| 669 | } |
||
| 670 | |||
| 671 | |||
| 672 | /* |
||
| 673 | * @brief C custom defined intrinsic function for M3 and M0 processors |
||
| 674 | */ |
||
| 675 | #if !defined (ARM_MATH_DSP) |
||
| 676 | |||
| 677 | /* |
||
| 678 | * @brief C custom defined QADD8 for M3 and M0 processors |
||
| 679 | */ |
||
| 680 | CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8( |
||
| 681 | uint32_t x, |
||
| 682 | uint32_t y) |
||
| 683 | { |
||
| 684 | q31_t r, s, t, u; |
||
| 685 | |||
| 686 | r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 687 | s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 688 | t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 689 | u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 690 | |||
| 691 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
||
| 692 | } |
||
| 693 | |||
| 694 | |||
| 695 | /* |
||
| 696 | * @brief C custom defined QSUB8 for M3 and M0 processors |
||
| 697 | */ |
||
| 698 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8( |
||
| 699 | uint32_t x, |
||
| 700 | uint32_t y) |
||
| 701 | { |
||
| 702 | q31_t r, s, t, u; |
||
| 703 | |||
| 704 | r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 705 | s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 706 | t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 707 | u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
||
| 708 | |||
| 709 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
||
| 710 | } |
||
| 711 | |||
| 712 | |||
| 713 | /* |
||
| 714 | * @brief C custom defined QADD16 for M3 and M0 processors |
||
| 715 | */ |
||
| 716 | CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16( |
||
| 717 | uint32_t x, |
||
| 718 | uint32_t y) |
||
| 719 | { |
||
| 720 | /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ |
||
| 721 | q31_t r = 0, s = 0; |
||
| 722 | |||
| 723 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 724 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 725 | |||
| 726 | return ((uint32_t)((s << 16) | (r ))); |
||
| 727 | } |
||
| 728 | |||
| 729 | |||
| 730 | /* |
||
| 731 | * @brief C custom defined SHADD16 for M3 and M0 processors |
||
| 732 | */ |
||
| 733 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16( |
||
| 734 | uint32_t x, |
||
| 735 | uint32_t y) |
||
| 736 | { |
||
| 737 | q31_t r, s; |
||
| 738 | |||
| 739 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 740 | s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 741 | |||
| 742 | return ((uint32_t)((s << 16) | (r ))); |
||
| 743 | } |
||
| 744 | |||
| 745 | |||
| 746 | /* |
||
| 747 | * @brief C custom defined QSUB16 for M3 and M0 processors |
||
| 748 | */ |
||
| 749 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16( |
||
| 750 | uint32_t x, |
||
| 751 | uint32_t y) |
||
| 752 | { |
||
| 753 | q31_t r, s; |
||
| 754 | |||
| 755 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 756 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 757 | |||
| 758 | return ((uint32_t)((s << 16) | (r ))); |
||
| 759 | } |
||
| 760 | |||
| 761 | |||
| 762 | /* |
||
| 763 | * @brief C custom defined SHSUB16 for M3 and M0 processors |
||
| 764 | */ |
||
| 765 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16( |
||
| 766 | uint32_t x, |
||
| 767 | uint32_t y) |
||
| 768 | { |
||
| 769 | q31_t r, s; |
||
| 770 | |||
| 771 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 772 | s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 773 | |||
| 774 | return ((uint32_t)((s << 16) | (r ))); |
||
| 775 | } |
||
| 776 | |||
| 777 | |||
| 778 | /* |
||
| 779 | * @brief C custom defined QASX for M3 and M0 processors |
||
| 780 | */ |
||
| 781 | CMSIS_INLINE __STATIC_INLINE uint32_t __QASX( |
||
| 782 | uint32_t x, |
||
| 783 | uint32_t y) |
||
| 784 | { |
||
| 785 | q31_t r, s; |
||
| 786 | |||
| 787 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 788 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 789 | |||
| 790 | return ((uint32_t)((s << 16) | (r ))); |
||
| 791 | } |
||
| 792 | |||
| 793 | |||
| 794 | /* |
||
| 795 | * @brief C custom defined SHASX for M3 and M0 processors |
||
| 796 | */ |
||
| 797 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX( |
||
| 798 | uint32_t x, |
||
| 799 | uint32_t y) |
||
| 800 | { |
||
| 801 | q31_t r, s; |
||
| 802 | |||
| 803 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 804 | s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 805 | |||
| 806 | return ((uint32_t)((s << 16) | (r ))); |
||
| 807 | } |
||
| 808 | |||
| 809 | |||
| 810 | /* |
||
| 811 | * @brief C custom defined QSAX for M3 and M0 processors |
||
| 812 | */ |
||
| 813 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX( |
||
| 814 | uint32_t x, |
||
| 815 | uint32_t y) |
||
| 816 | { |
||
| 817 | q31_t r, s; |
||
| 818 | |||
| 819 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 820 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
| 821 | |||
| 822 | return ((uint32_t)((s << 16) | (r ))); |
||
| 823 | } |
||
| 824 | |||
| 825 | |||
| 826 | /* |
||
| 827 | * @brief C custom defined SHSAX for M3 and M0 processors |
||
| 828 | */ |
||
| 829 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX( |
||
| 830 | uint32_t x, |
||
| 831 | uint32_t y) |
||
| 832 | { |
||
| 833 | q31_t r, s; |
||
| 834 | |||
| 835 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 836 | s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
| 837 | |||
| 838 | return ((uint32_t)((s << 16) | (r ))); |
||
| 839 | } |
||
| 840 | |||
| 841 | |||
| 842 | /* |
||
| 843 | * @brief C custom defined SMUSDX for M3 and M0 processors |
||
| 844 | */ |
||
| 845 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX( |
||
| 846 | uint32_t x, |
||
| 847 | uint32_t y) |
||
| 848 | { |
||
| 849 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
||
| 850 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
||
| 851 | } |
||
| 852 | |||
| 853 | /* |
||
| 854 | * @brief C custom defined SMUADX for M3 and M0 processors |
||
| 855 | */ |
||
| 856 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX( |
||
| 857 | uint32_t x, |
||
| 858 | uint32_t y) |
||
| 859 | { |
||
| 860 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
||
| 861 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
||
| 862 | } |
||
| 863 | |||
| 864 | |||
| 865 | /* |
||
| 866 | * @brief C custom defined QADD for M3 and M0 processors |
||
| 867 | */ |
||
| 868 | CMSIS_INLINE __STATIC_INLINE int32_t __QADD( |
||
| 869 | int32_t x, |
||
| 870 | int32_t y) |
||
| 871 | { |
||
| 872 | return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); |
||
| 873 | } |
||
| 874 | |||
| 875 | |||
| 876 | /* |
||
| 877 | * @brief C custom defined QSUB for M3 and M0 processors |
||
| 878 | */ |
||
| 879 | CMSIS_INLINE __STATIC_INLINE int32_t __QSUB( |
||
| 880 | int32_t x, |
||
| 881 | int32_t y) |
||
| 882 | { |
||
| 883 | return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); |
||
| 884 | } |
||
| 885 | |||
| 886 | |||
| 887 | /* |
||
| 888 | * @brief C custom defined SMLAD for M3 and M0 processors |
||
| 889 | */ |
||
| 890 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD( |
||
| 891 | uint32_t x, |
||
| 892 | uint32_t y, |
||
| 893 | uint32_t sum) |
||
| 894 | { |
||
| 895 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
| 896 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
||
| 897 | ( ((q31_t)sum ) ) )); |
||
| 898 | } |
||
| 899 | |||
| 900 | |||
| 901 | /* |
||
| 902 | * @brief C custom defined SMLADX for M3 and M0 processors |
||
| 903 | */ |
||
| 904 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX( |
||
| 905 | uint32_t x, |
||
| 906 | uint32_t y, |
||
| 907 | uint32_t sum) |
||
| 908 | { |
||
| 909 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
||
| 910 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
| 911 | ( ((q31_t)sum ) ) )); |
||
| 912 | } |
||
| 913 | |||
| 914 | |||
| 915 | /* |
||
| 916 | * @brief C custom defined SMLSDX for M3 and M0 processors |
||
| 917 | */ |
||
| 918 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX( |
||
| 919 | uint32_t x, |
||
| 920 | uint32_t y, |
||
| 921 | uint32_t sum) |
||
| 922 | { |
||
| 923 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
||
| 924 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
| 925 | ( ((q31_t)sum ) ) )); |
||
| 926 | } |
||
| 927 | |||
| 928 | |||
| 929 | /* |
||
| 930 | * @brief C custom defined SMLALD for M3 and M0 processors |
||
| 931 | */ |
||
| 932 | CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD( |
||
| 933 | uint32_t x, |
||
| 934 | uint32_t y, |
||
| 935 | uint64_t sum) |
||
| 936 | { |
||
| 937 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ |
||
| 938 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
| 939 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
||
| 940 | ( ((q63_t)sum ) ) )); |
||
| 941 | } |
||
| 942 | |||
| 943 | |||
| 944 | /* |
||
| 945 | * @brief C custom defined SMLALDX for M3 and M0 processors |
||
| 946 | */ |
||
| 947 | CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX( |
||
| 948 | uint32_t x, |
||
| 949 | uint32_t y, |
||
| 950 | uint64_t sum) |
||
| 951 | { |
||
| 952 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ |
||
| 953 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
||
| 954 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
| 955 | ( ((q63_t)sum ) ) )); |
||
| 956 | } |
||
| 957 | |||
| 958 | |||
| 959 | /* |
||
| 960 | * @brief C custom defined SMUAD for M3 and M0 processors |
||
| 961 | */ |
||
| 962 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD( |
||
| 963 | uint32_t x, |
||
| 964 | uint32_t y) |
||
| 965 | { |
||
| 966 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
| 967 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
||
| 968 | } |
||
| 969 | |||
| 970 | |||
| 971 | /* |
||
| 972 | * @brief C custom defined SMUSD for M3 and M0 processors |
||
| 973 | */ |
||
| 974 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD( |
||
| 975 | uint32_t x, |
||
| 976 | uint32_t y) |
||
| 977 | { |
||
| 978 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - |
||
| 979 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
||
| 980 | } |
||
| 981 | |||
| 982 | |||
| 983 | /* |
||
| 984 | * @brief C custom defined SXTB16 for M3 and M0 processors |
||
| 985 | */ |
||
| 986 | CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16( |
||
| 987 | uint32_t x) |
||
| 988 | { |
||
| 989 | return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | |
||
| 990 | ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); |
||
| 991 | } |
||
| 992 | |||
| 993 | /* |
||
| 994 | * @brief C custom defined SMMLA for M3 and M0 processors |
||
| 995 | */ |
||
| 996 | CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA( |
||
| 997 | int32_t x, |
||
| 998 | int32_t y, |
||
| 999 | int32_t sum) |
||
| 1000 | { |
||
| 1001 | return (sum + (int32_t) (((int64_t) x * y) >> 32)); |
||
| 1002 | } |
||
| 1003 | |||
| 1004 | #endif /* !defined (ARM_MATH_DSP) */ |
||
| 1005 | |||
| 1006 | |||
| 1007 | /** |
||
| 1008 | * @brief Instance structure for the Q7 FIR filter. |
||
| 1009 | */ |
||
| 1010 | typedef struct |
||
| 1011 | { |
||
| 1012 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
| 1013 | q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 1014 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 1015 | } arm_fir_instance_q7; |
||
| 1016 | |||
| 1017 | /** |
||
| 1018 | * @brief Instance structure for the Q15 FIR filter. |
||
| 1019 | */ |
||
| 1020 | typedef struct |
||
| 1021 | { |
||
| 1022 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
| 1023 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 1024 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 1025 | } arm_fir_instance_q15; |
||
| 1026 | |||
| 1027 | /** |
||
| 1028 | * @brief Instance structure for the Q31 FIR filter. |
||
| 1029 | */ |
||
| 1030 | typedef struct |
||
| 1031 | { |
||
| 1032 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
| 1033 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 1034 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 1035 | } arm_fir_instance_q31; |
||
| 1036 | |||
| 1037 | /** |
||
| 1038 | * @brief Instance structure for the floating-point FIR filter. |
||
| 1039 | */ |
||
| 1040 | typedef struct |
||
| 1041 | { |
||
| 1042 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
| 1043 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 1044 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 1045 | } arm_fir_instance_f32; |
||
| 1046 | |||
| 1047 | |||
| 1048 | /** |
||
| 1049 | * @brief Processing function for the Q7 FIR filter. |
||
| 1050 | * @param[in] S points to an instance of the Q7 FIR filter structure. |
||
| 1051 | * @param[in] pSrc points to the block of input data. |
||
| 1052 | * @param[out] pDst points to the block of output data. |
||
| 1053 | * @param[in] blockSize number of samples to process. |
||
| 1054 | */ |
||
| 1055 | void arm_fir_q7( |
||
| 1056 | const arm_fir_instance_q7 * S, |
||
| 1057 | q7_t * pSrc, |
||
| 1058 | q7_t * pDst, |
||
| 1059 | uint32_t blockSize); |
||
| 1060 | |||
| 1061 | |||
| 1062 | /** |
||
| 1063 | * @brief Initialization function for the Q7 FIR filter. |
||
| 1064 | * @param[in,out] S points to an instance of the Q7 FIR structure. |
||
| 1065 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
| 1066 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 1067 | * @param[in] pState points to the state buffer. |
||
| 1068 | * @param[in] blockSize number of samples that are processed. |
||
| 1069 | */ |
||
| 1070 | void arm_fir_init_q7( |
||
| 1071 | arm_fir_instance_q7 * S, |
||
| 1072 | uint16_t numTaps, |
||
| 1073 | q7_t * pCoeffs, |
||
| 1074 | q7_t * pState, |
||
| 1075 | uint32_t blockSize); |
||
| 1076 | |||
| 1077 | |||
| 1078 | /** |
||
| 1079 | * @brief Processing function for the Q15 FIR filter. |
||
| 1080 | * @param[in] S points to an instance of the Q15 FIR structure. |
||
| 1081 | * @param[in] pSrc points to the block of input data. |
||
| 1082 | * @param[out] pDst points to the block of output data. |
||
| 1083 | * @param[in] blockSize number of samples to process. |
||
| 1084 | */ |
||
| 1085 | void arm_fir_q15( |
||
| 1086 | const arm_fir_instance_q15 * S, |
||
| 1087 | q15_t * pSrc, |
||
| 1088 | q15_t * pDst, |
||
| 1089 | uint32_t blockSize); |
||
| 1090 | |||
| 1091 | |||
| 1092 | /** |
||
| 1093 | * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. |
||
| 1094 | * @param[in] S points to an instance of the Q15 FIR filter structure. |
||
| 1095 | * @param[in] pSrc points to the block of input data. |
||
| 1096 | * @param[out] pDst points to the block of output data. |
||
| 1097 | * @param[in] blockSize number of samples to process. |
||
| 1098 | */ |
||
| 1099 | void arm_fir_fast_q15( |
||
| 1100 | const arm_fir_instance_q15 * S, |
||
| 1101 | q15_t * pSrc, |
||
| 1102 | q15_t * pDst, |
||
| 1103 | uint32_t blockSize); |
||
| 1104 | |||
| 1105 | |||
| 1106 | /** |
||
| 1107 | * @brief Initialization function for the Q15 FIR filter. |
||
| 1108 | * @param[in,out] S points to an instance of the Q15 FIR filter structure. |
||
| 1109 | * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. |
||
| 1110 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 1111 | * @param[in] pState points to the state buffer. |
||
| 1112 | * @param[in] blockSize number of samples that are processed at a time. |
||
| 1113 | * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if |
||
| 1114 | * <code>numTaps</code> is not a supported value. |
||
| 1115 | */ |
||
| 1116 | arm_status arm_fir_init_q15( |
||
| 1117 | arm_fir_instance_q15 * S, |
||
| 1118 | uint16_t numTaps, |
||
| 1119 | q15_t * pCoeffs, |
||
| 1120 | q15_t * pState, |
||
| 1121 | uint32_t blockSize); |
||
| 1122 | |||
| 1123 | |||
| 1124 | /** |
||
| 1125 | * @brief Processing function for the Q31 FIR filter. |
||
| 1126 | * @param[in] S points to an instance of the Q31 FIR filter structure. |
||
| 1127 | * @param[in] pSrc points to the block of input data. |
||
| 1128 | * @param[out] pDst points to the block of output data. |
||
| 1129 | * @param[in] blockSize number of samples to process. |
||
| 1130 | */ |
||
| 1131 | void arm_fir_q31( |
||
| 1132 | const arm_fir_instance_q31 * S, |
||
| 1133 | q31_t * pSrc, |
||
| 1134 | q31_t * pDst, |
||
| 1135 | uint32_t blockSize); |
||
| 1136 | |||
| 1137 | |||
| 1138 | /** |
||
| 1139 | * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. |
||
| 1140 | * @param[in] S points to an instance of the Q31 FIR structure. |
||
| 1141 | * @param[in] pSrc points to the block of input data. |
||
| 1142 | * @param[out] pDst points to the block of output data. |
||
| 1143 | * @param[in] blockSize number of samples to process. |
||
| 1144 | */ |
||
| 1145 | void arm_fir_fast_q31( |
||
| 1146 | const arm_fir_instance_q31 * S, |
||
| 1147 | q31_t * pSrc, |
||
| 1148 | q31_t * pDst, |
||
| 1149 | uint32_t blockSize); |
||
| 1150 | |||
| 1151 | |||
| 1152 | /** |
||
| 1153 | * @brief Initialization function for the Q31 FIR filter. |
||
| 1154 | * @param[in,out] S points to an instance of the Q31 FIR structure. |
||
| 1155 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
| 1156 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 1157 | * @param[in] pState points to the state buffer. |
||
| 1158 | * @param[in] blockSize number of samples that are processed at a time. |
||
| 1159 | */ |
||
| 1160 | void arm_fir_init_q31( |
||
| 1161 | arm_fir_instance_q31 * S, |
||
| 1162 | uint16_t numTaps, |
||
| 1163 | q31_t * pCoeffs, |
||
| 1164 | q31_t * pState, |
||
| 1165 | uint32_t blockSize); |
||
| 1166 | |||
| 1167 | |||
| 1168 | /** |
||
| 1169 | * @brief Processing function for the floating-point FIR filter. |
||
| 1170 | * @param[in] S points to an instance of the floating-point FIR structure. |
||
| 1171 | * @param[in] pSrc points to the block of input data. |
||
| 1172 | * @param[out] pDst points to the block of output data. |
||
| 1173 | * @param[in] blockSize number of samples to process. |
||
| 1174 | */ |
||
| 1175 | void arm_fir_f32( |
||
| 1176 | const arm_fir_instance_f32 * S, |
||
| 1177 | float32_t * pSrc, |
||
| 1178 | float32_t * pDst, |
||
| 1179 | uint32_t blockSize); |
||
| 1180 | |||
| 1181 | |||
| 1182 | /** |
||
| 1183 | * @brief Initialization function for the floating-point FIR filter. |
||
| 1184 | * @param[in,out] S points to an instance of the floating-point FIR filter structure. |
||
| 1185 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
| 1186 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 1187 | * @param[in] pState points to the state buffer. |
||
| 1188 | * @param[in] blockSize number of samples that are processed at a time. |
||
| 1189 | */ |
||
| 1190 | void arm_fir_init_f32( |
||
| 1191 | arm_fir_instance_f32 * S, |
||
| 1192 | uint16_t numTaps, |
||
| 1193 | float32_t * pCoeffs, |
||
| 1194 | float32_t * pState, |
||
| 1195 | uint32_t blockSize); |
||
| 1196 | |||
| 1197 | |||
| 1198 | /** |
||
| 1199 | * @brief Instance structure for the Q15 Biquad cascade filter. |
||
| 1200 | */ |
||
| 1201 | typedef struct |
||
| 1202 | { |
||
| 1203 | int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
| 1204 | q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
| 1205 | q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
| 1206 | int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
| 1207 | } arm_biquad_casd_df1_inst_q15; |
||
| 1208 | |||
| 1209 | /** |
||
| 1210 | * @brief Instance structure for the Q31 Biquad cascade filter. |
||
| 1211 | */ |
||
| 1212 | typedef struct |
||
| 1213 | { |
||
| 1214 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
| 1215 | q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
| 1216 | q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
| 1217 | uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
| 1218 | } arm_biquad_casd_df1_inst_q31; |
||
| 1219 | |||
| 1220 | /** |
||
| 1221 | * @brief Instance structure for the floating-point Biquad cascade filter. |
||
| 1222 | */ |
||
| 1223 | typedef struct |
||
| 1224 | { |
||
| 1225 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
| 1226 | float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
| 1227 | float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
| 1228 | } arm_biquad_casd_df1_inst_f32; |
||
| 1229 | |||
| 1230 | |||
| 1231 | /** |
||
| 1232 | * @brief Processing function for the Q15 Biquad cascade filter. |
||
| 1233 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
||
| 1234 | * @param[in] pSrc points to the block of input data. |
||
| 1235 | * @param[out] pDst points to the block of output data. |
||
| 1236 | * @param[in] blockSize number of samples to process. |
||
| 1237 | */ |
||
| 1238 | void arm_biquad_cascade_df1_q15( |
||
| 1239 | const arm_biquad_casd_df1_inst_q15 * S, |
||
| 1240 | q15_t * pSrc, |
||
| 1241 | q15_t * pDst, |
||
| 1242 | uint32_t blockSize); |
||
| 1243 | |||
| 1244 | |||
| 1245 | /** |
||
| 1246 | * @brief Initialization function for the Q15 Biquad cascade filter. |
||
| 1247 | * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. |
||
| 1248 | * @param[in] numStages number of 2nd order stages in the filter. |
||
| 1249 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 1250 | * @param[in] pState points to the state buffer. |
||
| 1251 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
| 1252 | */ |
||
| 1253 | void arm_biquad_cascade_df1_init_q15( |
||
| 1254 | arm_biquad_casd_df1_inst_q15 * S, |
||
| 1255 | uint8_t numStages, |
||
| 1256 | q15_t * pCoeffs, |
||
| 1257 | q15_t * pState, |
||
| 1258 | int8_t postShift); |
||
| 1259 | |||
| 1260 | |||
| 1261 | /** |
||
| 1262 | * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
| 1263 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
||
| 1264 | * @param[in] pSrc points to the block of input data. |
||
| 1265 | * @param[out] pDst points to the block of output data. |
||
| 1266 | * @param[in] blockSize number of samples to process. |
||
| 1267 | */ |
||
| 1268 | void arm_biquad_cascade_df1_fast_q15( |
||
| 1269 | const arm_biquad_casd_df1_inst_q15 * S, |
||
| 1270 | q15_t * pSrc, |
||
| 1271 | q15_t * pDst, |
||
| 1272 | uint32_t blockSize); |
||
| 1273 | |||
| 1274 | |||
| 1275 | /** |
||
| 1276 | * @brief Processing function for the Q31 Biquad cascade filter |
||
| 1277 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
||
| 1278 | * @param[in] pSrc points to the block of input data. |
||
| 1279 | * @param[out] pDst points to the block of output data. |
||
| 1280 | * @param[in] blockSize number of samples to process. |
||
| 1281 | */ |
||
| 1282 | void arm_biquad_cascade_df1_q31( |
||
| 1283 | const arm_biquad_casd_df1_inst_q31 * S, |
||
| 1284 | q31_t * pSrc, |
||
| 1285 | q31_t * pDst, |
||
| 1286 | uint32_t blockSize); |
||
| 1287 | |||
| 1288 | |||
| 1289 | /** |
||
| 1290 | * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
| 1291 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
||
| 1292 | * @param[in] pSrc points to the block of input data. |
||
| 1293 | * @param[out] pDst points to the block of output data. |
||
| 1294 | * @param[in] blockSize number of samples to process. |
||
| 1295 | */ |
||
| 1296 | void arm_biquad_cascade_df1_fast_q31( |
||
| 1297 | const arm_biquad_casd_df1_inst_q31 * S, |
||
| 1298 | q31_t * pSrc, |
||
| 1299 | q31_t * pDst, |
||
| 1300 | uint32_t blockSize); |
||
| 1301 | |||
| 1302 | |||
| 1303 | /** |
||
| 1304 | * @brief Initialization function for the Q31 Biquad cascade filter. |
||
| 1305 | * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. |
||
| 1306 | * @param[in] numStages number of 2nd order stages in the filter. |
||
| 1307 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 1308 | * @param[in] pState points to the state buffer. |
||
| 1309 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
| 1310 | */ |
||
| 1311 | void arm_biquad_cascade_df1_init_q31( |
||
| 1312 | arm_biquad_casd_df1_inst_q31 * S, |
||
| 1313 | uint8_t numStages, |
||
| 1314 | q31_t * pCoeffs, |
||
| 1315 | q31_t * pState, |
||
| 1316 | int8_t postShift); |
||
| 1317 | |||
| 1318 | |||
| 1319 | /** |
||
| 1320 | * @brief Processing function for the floating-point Biquad cascade filter. |
||
| 1321 | * @param[in] S points to an instance of the floating-point Biquad cascade structure. |
||
| 1322 | * @param[in] pSrc points to the block of input data. |
||
| 1323 | * @param[out] pDst points to the block of output data. |
||
| 1324 | * @param[in] blockSize number of samples to process. |
||
| 1325 | */ |
||
| 1326 | void arm_biquad_cascade_df1_f32( |
||
| 1327 | const arm_biquad_casd_df1_inst_f32 * S, |
||
| 1328 | float32_t * pSrc, |
||
| 1329 | float32_t * pDst, |
||
| 1330 | uint32_t blockSize); |
||
| 1331 | |||
| 1332 | |||
| 1333 | /** |
||
| 1334 | * @brief Initialization function for the floating-point Biquad cascade filter. |
||
| 1335 | * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. |
||
| 1336 | * @param[in] numStages number of 2nd order stages in the filter. |
||
| 1337 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 1338 | * @param[in] pState points to the state buffer. |
||
| 1339 | */ |
||
| 1340 | void arm_biquad_cascade_df1_init_f32( |
||
| 1341 | arm_biquad_casd_df1_inst_f32 * S, |
||
| 1342 | uint8_t numStages, |
||
| 1343 | float32_t * pCoeffs, |
||
| 1344 | float32_t * pState); |
||
| 1345 | |||
| 1346 | |||
| 1347 | /** |
||
| 1348 | * @brief Instance structure for the floating-point matrix structure. |
||
| 1349 | */ |
||
| 1350 | typedef struct |
||
| 1351 | { |
||
| 1352 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
| 1353 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
| 1354 | float32_t *pData; /**< points to the data of the matrix. */ |
||
| 1355 | } arm_matrix_instance_f32; |
||
| 1356 | |||
| 1357 | |||
| 1358 | /** |
||
| 1359 | * @brief Instance structure for the floating-point matrix structure. |
||
| 1360 | */ |
||
| 1361 | typedef struct |
||
| 1362 | { |
||
| 1363 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
| 1364 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
| 1365 | float64_t *pData; /**< points to the data of the matrix. */ |
||
| 1366 | } arm_matrix_instance_f64; |
||
| 1367 | |||
| 1368 | /** |
||
| 1369 | * @brief Instance structure for the Q15 matrix structure. |
||
| 1370 | */ |
||
| 1371 | typedef struct |
||
| 1372 | { |
||
| 1373 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
| 1374 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
| 1375 | q15_t *pData; /**< points to the data of the matrix. */ |
||
| 1376 | } arm_matrix_instance_q15; |
||
| 1377 | |||
| 1378 | /** |
||
| 1379 | * @brief Instance structure for the Q31 matrix structure. |
||
| 1380 | */ |
||
| 1381 | typedef struct |
||
| 1382 | { |
||
| 1383 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
| 1384 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
| 1385 | q31_t *pData; /**< points to the data of the matrix. */ |
||
| 1386 | } arm_matrix_instance_q31; |
||
| 1387 | |||
| 1388 | |||
| 1389 | /** |
||
| 1390 | * @brief Floating-point matrix addition. |
||
| 1391 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1392 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1393 | * @param[out] pDst points to output matrix structure |
||
| 1394 | * @return The function returns either |
||
| 1395 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1396 | */ |
||
| 1397 | arm_status arm_mat_add_f32( |
||
| 1398 | const arm_matrix_instance_f32 * pSrcA, |
||
| 1399 | const arm_matrix_instance_f32 * pSrcB, |
||
| 1400 | arm_matrix_instance_f32 * pDst); |
||
| 1401 | |||
| 1402 | |||
| 1403 | /** |
||
| 1404 | * @brief Q15 matrix addition. |
||
| 1405 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1406 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1407 | * @param[out] pDst points to output matrix structure |
||
| 1408 | * @return The function returns either |
||
| 1409 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1410 | */ |
||
| 1411 | arm_status arm_mat_add_q15( |
||
| 1412 | const arm_matrix_instance_q15 * pSrcA, |
||
| 1413 | const arm_matrix_instance_q15 * pSrcB, |
||
| 1414 | arm_matrix_instance_q15 * pDst); |
||
| 1415 | |||
| 1416 | |||
| 1417 | /** |
||
| 1418 | * @brief Q31 matrix addition. |
||
| 1419 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1420 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1421 | * @param[out] pDst points to output matrix structure |
||
| 1422 | * @return The function returns either |
||
| 1423 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1424 | */ |
||
| 1425 | arm_status arm_mat_add_q31( |
||
| 1426 | const arm_matrix_instance_q31 * pSrcA, |
||
| 1427 | const arm_matrix_instance_q31 * pSrcB, |
||
| 1428 | arm_matrix_instance_q31 * pDst); |
||
| 1429 | |||
| 1430 | |||
| 1431 | /** |
||
| 1432 | * @brief Floating-point, complex, matrix multiplication. |
||
| 1433 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1434 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1435 | * @param[out] pDst points to output matrix structure |
||
| 1436 | * @return The function returns either |
||
| 1437 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1438 | */ |
||
| 1439 | arm_status arm_mat_cmplx_mult_f32( |
||
| 1440 | const arm_matrix_instance_f32 * pSrcA, |
||
| 1441 | const arm_matrix_instance_f32 * pSrcB, |
||
| 1442 | arm_matrix_instance_f32 * pDst); |
||
| 1443 | |||
| 1444 | |||
| 1445 | /** |
||
| 1446 | * @brief Q15, complex, matrix multiplication. |
||
| 1447 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1448 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1449 | * @param[out] pDst points to output matrix structure |
||
| 1450 | * @return The function returns either |
||
| 1451 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1452 | */ |
||
| 1453 | arm_status arm_mat_cmplx_mult_q15( |
||
| 1454 | const arm_matrix_instance_q15 * pSrcA, |
||
| 1455 | const arm_matrix_instance_q15 * pSrcB, |
||
| 1456 | arm_matrix_instance_q15 * pDst, |
||
| 1457 | q15_t * pScratch); |
||
| 1458 | |||
| 1459 | |||
| 1460 | /** |
||
| 1461 | * @brief Q31, complex, matrix multiplication. |
||
| 1462 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1463 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1464 | * @param[out] pDst points to output matrix structure |
||
| 1465 | * @return The function returns either |
||
| 1466 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1467 | */ |
||
| 1468 | arm_status arm_mat_cmplx_mult_q31( |
||
| 1469 | const arm_matrix_instance_q31 * pSrcA, |
||
| 1470 | const arm_matrix_instance_q31 * pSrcB, |
||
| 1471 | arm_matrix_instance_q31 * pDst); |
||
| 1472 | |||
| 1473 | |||
| 1474 | /** |
||
| 1475 | * @brief Floating-point matrix transpose. |
||
| 1476 | * @param[in] pSrc points to the input matrix |
||
| 1477 | * @param[out] pDst points to the output matrix |
||
| 1478 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
| 1479 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1480 | */ |
||
| 1481 | arm_status arm_mat_trans_f32( |
||
| 1482 | const arm_matrix_instance_f32 * pSrc, |
||
| 1483 | arm_matrix_instance_f32 * pDst); |
||
| 1484 | |||
| 1485 | |||
| 1486 | /** |
||
| 1487 | * @brief Q15 matrix transpose. |
||
| 1488 | * @param[in] pSrc points to the input matrix |
||
| 1489 | * @param[out] pDst points to the output matrix |
||
| 1490 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
| 1491 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1492 | */ |
||
| 1493 | arm_status arm_mat_trans_q15( |
||
| 1494 | const arm_matrix_instance_q15 * pSrc, |
||
| 1495 | arm_matrix_instance_q15 * pDst); |
||
| 1496 | |||
| 1497 | |||
| 1498 | /** |
||
| 1499 | * @brief Q31 matrix transpose. |
||
| 1500 | * @param[in] pSrc points to the input matrix |
||
| 1501 | * @param[out] pDst points to the output matrix |
||
| 1502 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
| 1503 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1504 | */ |
||
| 1505 | arm_status arm_mat_trans_q31( |
||
| 1506 | const arm_matrix_instance_q31 * pSrc, |
||
| 1507 | arm_matrix_instance_q31 * pDst); |
||
| 1508 | |||
| 1509 | |||
| 1510 | /** |
||
| 1511 | * @brief Floating-point matrix multiplication |
||
| 1512 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1513 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1514 | * @param[out] pDst points to output matrix structure |
||
| 1515 | * @return The function returns either |
||
| 1516 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1517 | */ |
||
| 1518 | arm_status arm_mat_mult_f32( |
||
| 1519 | const arm_matrix_instance_f32 * pSrcA, |
||
| 1520 | const arm_matrix_instance_f32 * pSrcB, |
||
| 1521 | arm_matrix_instance_f32 * pDst); |
||
| 1522 | |||
| 1523 | |||
| 1524 | /** |
||
| 1525 | * @brief Q15 matrix multiplication |
||
| 1526 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1527 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1528 | * @param[out] pDst points to output matrix structure |
||
| 1529 | * @param[in] pState points to the array for storing intermediate results |
||
| 1530 | * @return The function returns either |
||
| 1531 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1532 | */ |
||
| 1533 | arm_status arm_mat_mult_q15( |
||
| 1534 | const arm_matrix_instance_q15 * pSrcA, |
||
| 1535 | const arm_matrix_instance_q15 * pSrcB, |
||
| 1536 | arm_matrix_instance_q15 * pDst, |
||
| 1537 | q15_t * pState); |
||
| 1538 | |||
| 1539 | |||
| 1540 | /** |
||
| 1541 | * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
| 1542 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1543 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1544 | * @param[out] pDst points to output matrix structure |
||
| 1545 | * @param[in] pState points to the array for storing intermediate results |
||
| 1546 | * @return The function returns either |
||
| 1547 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1548 | */ |
||
| 1549 | arm_status arm_mat_mult_fast_q15( |
||
| 1550 | const arm_matrix_instance_q15 * pSrcA, |
||
| 1551 | const arm_matrix_instance_q15 * pSrcB, |
||
| 1552 | arm_matrix_instance_q15 * pDst, |
||
| 1553 | q15_t * pState); |
||
| 1554 | |||
| 1555 | |||
| 1556 | /** |
||
| 1557 | * @brief Q31 matrix multiplication |
||
| 1558 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1559 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1560 | * @param[out] pDst points to output matrix structure |
||
| 1561 | * @return The function returns either |
||
| 1562 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1563 | */ |
||
| 1564 | arm_status arm_mat_mult_q31( |
||
| 1565 | const arm_matrix_instance_q31 * pSrcA, |
||
| 1566 | const arm_matrix_instance_q31 * pSrcB, |
||
| 1567 | arm_matrix_instance_q31 * pDst); |
||
| 1568 | |||
| 1569 | |||
| 1570 | /** |
||
| 1571 | * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
| 1572 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1573 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1574 | * @param[out] pDst points to output matrix structure |
||
| 1575 | * @return The function returns either |
||
| 1576 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1577 | */ |
||
| 1578 | arm_status arm_mat_mult_fast_q31( |
||
| 1579 | const arm_matrix_instance_q31 * pSrcA, |
||
| 1580 | const arm_matrix_instance_q31 * pSrcB, |
||
| 1581 | arm_matrix_instance_q31 * pDst); |
||
| 1582 | |||
| 1583 | |||
| 1584 | /** |
||
| 1585 | * @brief Floating-point matrix subtraction |
||
| 1586 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1587 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1588 | * @param[out] pDst points to output matrix structure |
||
| 1589 | * @return The function returns either |
||
| 1590 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1591 | */ |
||
| 1592 | arm_status arm_mat_sub_f32( |
||
| 1593 | const arm_matrix_instance_f32 * pSrcA, |
||
| 1594 | const arm_matrix_instance_f32 * pSrcB, |
||
| 1595 | arm_matrix_instance_f32 * pDst); |
||
| 1596 | |||
| 1597 | |||
| 1598 | /** |
||
| 1599 | * @brief Q15 matrix subtraction |
||
| 1600 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1601 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1602 | * @param[out] pDst points to output matrix structure |
||
| 1603 | * @return The function returns either |
||
| 1604 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1605 | */ |
||
| 1606 | arm_status arm_mat_sub_q15( |
||
| 1607 | const arm_matrix_instance_q15 * pSrcA, |
||
| 1608 | const arm_matrix_instance_q15 * pSrcB, |
||
| 1609 | arm_matrix_instance_q15 * pDst); |
||
| 1610 | |||
| 1611 | |||
| 1612 | /** |
||
| 1613 | * @brief Q31 matrix subtraction |
||
| 1614 | * @param[in] pSrcA points to the first input matrix structure |
||
| 1615 | * @param[in] pSrcB points to the second input matrix structure |
||
| 1616 | * @param[out] pDst points to output matrix structure |
||
| 1617 | * @return The function returns either |
||
| 1618 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1619 | */ |
||
| 1620 | arm_status arm_mat_sub_q31( |
||
| 1621 | const arm_matrix_instance_q31 * pSrcA, |
||
| 1622 | const arm_matrix_instance_q31 * pSrcB, |
||
| 1623 | arm_matrix_instance_q31 * pDst); |
||
| 1624 | |||
| 1625 | |||
| 1626 | /** |
||
| 1627 | * @brief Floating-point matrix scaling. |
||
| 1628 | * @param[in] pSrc points to the input matrix |
||
| 1629 | * @param[in] scale scale factor |
||
| 1630 | * @param[out] pDst points to the output matrix |
||
| 1631 | * @return The function returns either |
||
| 1632 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1633 | */ |
||
| 1634 | arm_status arm_mat_scale_f32( |
||
| 1635 | const arm_matrix_instance_f32 * pSrc, |
||
| 1636 | float32_t scale, |
||
| 1637 | arm_matrix_instance_f32 * pDst); |
||
| 1638 | |||
| 1639 | |||
| 1640 | /** |
||
| 1641 | * @brief Q15 matrix scaling. |
||
| 1642 | * @param[in] pSrc points to input matrix |
||
| 1643 | * @param[in] scaleFract fractional portion of the scale factor |
||
| 1644 | * @param[in] shift number of bits to shift the result by |
||
| 1645 | * @param[out] pDst points to output matrix |
||
| 1646 | * @return The function returns either |
||
| 1647 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1648 | */ |
||
| 1649 | arm_status arm_mat_scale_q15( |
||
| 1650 | const arm_matrix_instance_q15 * pSrc, |
||
| 1651 | q15_t scaleFract, |
||
| 1652 | int32_t shift, |
||
| 1653 | arm_matrix_instance_q15 * pDst); |
||
| 1654 | |||
| 1655 | |||
| 1656 | /** |
||
| 1657 | * @brief Q31 matrix scaling. |
||
| 1658 | * @param[in] pSrc points to input matrix |
||
| 1659 | * @param[in] scaleFract fractional portion of the scale factor |
||
| 1660 | * @param[in] shift number of bits to shift the result by |
||
| 1661 | * @param[out] pDst points to output matrix structure |
||
| 1662 | * @return The function returns either |
||
| 1663 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 1664 | */ |
||
| 1665 | arm_status arm_mat_scale_q31( |
||
| 1666 | const arm_matrix_instance_q31 * pSrc, |
||
| 1667 | q31_t scaleFract, |
||
| 1668 | int32_t shift, |
||
| 1669 | arm_matrix_instance_q31 * pDst); |
||
| 1670 | |||
| 1671 | |||
| 1672 | /** |
||
| 1673 | * @brief Q31 matrix initialization. |
||
| 1674 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
||
| 1675 | * @param[in] nRows number of rows in the matrix. |
||
| 1676 | * @param[in] nColumns number of columns in the matrix. |
||
| 1677 | * @param[in] pData points to the matrix data array. |
||
| 1678 | */ |
||
| 1679 | void arm_mat_init_q31( |
||
| 1680 | arm_matrix_instance_q31 * S, |
||
| 1681 | uint16_t nRows, |
||
| 1682 | uint16_t nColumns, |
||
| 1683 | q31_t * pData); |
||
| 1684 | |||
| 1685 | |||
| 1686 | /** |
||
| 1687 | * @brief Q15 matrix initialization. |
||
| 1688 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
||
| 1689 | * @param[in] nRows number of rows in the matrix. |
||
| 1690 | * @param[in] nColumns number of columns in the matrix. |
||
| 1691 | * @param[in] pData points to the matrix data array. |
||
| 1692 | */ |
||
| 1693 | void arm_mat_init_q15( |
||
| 1694 | arm_matrix_instance_q15 * S, |
||
| 1695 | uint16_t nRows, |
||
| 1696 | uint16_t nColumns, |
||
| 1697 | q15_t * pData); |
||
| 1698 | |||
| 1699 | |||
| 1700 | /** |
||
| 1701 | * @brief Floating-point matrix initialization. |
||
| 1702 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
||
| 1703 | * @param[in] nRows number of rows in the matrix. |
||
| 1704 | * @param[in] nColumns number of columns in the matrix. |
||
| 1705 | * @param[in] pData points to the matrix data array. |
||
| 1706 | */ |
||
| 1707 | void arm_mat_init_f32( |
||
| 1708 | arm_matrix_instance_f32 * S, |
||
| 1709 | uint16_t nRows, |
||
| 1710 | uint16_t nColumns, |
||
| 1711 | float32_t * pData); |
||
| 1712 | |||
| 1713 | |||
| 1714 | |||
| 1715 | /** |
||
| 1716 | * @brief Instance structure for the Q15 PID Control. |
||
| 1717 | */ |
||
| 1718 | typedef struct |
||
| 1719 | { |
||
| 1720 | q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
| 1721 | #if !defined (ARM_MATH_DSP) |
||
| 1722 | q15_t A1; |
||
| 1723 | q15_t A2; |
||
| 1724 | #else |
||
| 1725 | q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ |
||
| 1726 | #endif |
||
| 1727 | q15_t state[3]; /**< The state array of length 3. */ |
||
| 1728 | q15_t Kp; /**< The proportional gain. */ |
||
| 1729 | q15_t Ki; /**< The integral gain. */ |
||
| 1730 | q15_t Kd; /**< The derivative gain. */ |
||
| 1731 | } arm_pid_instance_q15; |
||
| 1732 | |||
| 1733 | /** |
||
| 1734 | * @brief Instance structure for the Q31 PID Control. |
||
| 1735 | */ |
||
| 1736 | typedef struct |
||
| 1737 | { |
||
| 1738 | q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
| 1739 | q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
| 1740 | q31_t A2; /**< The derived gain, A2 = Kd . */ |
||
| 1741 | q31_t state[3]; /**< The state array of length 3. */ |
||
| 1742 | q31_t Kp; /**< The proportional gain. */ |
||
| 1743 | q31_t Ki; /**< The integral gain. */ |
||
| 1744 | q31_t Kd; /**< The derivative gain. */ |
||
| 1745 | } arm_pid_instance_q31; |
||
| 1746 | |||
| 1747 | /** |
||
| 1748 | * @brief Instance structure for the floating-point PID Control. |
||
| 1749 | */ |
||
| 1750 | typedef struct |
||
| 1751 | { |
||
| 1752 | float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
| 1753 | float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
| 1754 | float32_t A2; /**< The derived gain, A2 = Kd . */ |
||
| 1755 | float32_t state[3]; /**< The state array of length 3. */ |
||
| 1756 | float32_t Kp; /**< The proportional gain. */ |
||
| 1757 | float32_t Ki; /**< The integral gain. */ |
||
| 1758 | float32_t Kd; /**< The derivative gain. */ |
||
| 1759 | } arm_pid_instance_f32; |
||
| 1760 | |||
| 1761 | |||
| 1762 | |||
| 1763 | /** |
||
| 1764 | * @brief Initialization function for the floating-point PID Control. |
||
| 1765 | * @param[in,out] S points to an instance of the PID structure. |
||
| 1766 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
| 1767 | */ |
||
| 1768 | void arm_pid_init_f32( |
||
| 1769 | arm_pid_instance_f32 * S, |
||
| 1770 | int32_t resetStateFlag); |
||
| 1771 | |||
| 1772 | |||
| 1773 | /** |
||
| 1774 | * @brief Reset function for the floating-point PID Control. |
||
| 1775 | * @param[in,out] S is an instance of the floating-point PID Control structure |
||
| 1776 | */ |
||
| 1777 | void arm_pid_reset_f32( |
||
| 1778 | arm_pid_instance_f32 * S); |
||
| 1779 | |||
| 1780 | |||
| 1781 | /** |
||
| 1782 | * @brief Initialization function for the Q31 PID Control. |
||
| 1783 | * @param[in,out] S points to an instance of the Q15 PID structure. |
||
| 1784 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
| 1785 | */ |
||
| 1786 | void arm_pid_init_q31( |
||
| 1787 | arm_pid_instance_q31 * S, |
||
| 1788 | int32_t resetStateFlag); |
||
| 1789 | |||
| 1790 | |||
| 1791 | /** |
||
| 1792 | * @brief Reset function for the Q31 PID Control. |
||
| 1793 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
||
| 1794 | */ |
||
| 1795 | |||
| 1796 | void arm_pid_reset_q31( |
||
| 1797 | arm_pid_instance_q31 * S); |
||
| 1798 | |||
| 1799 | |||
| 1800 | /** |
||
| 1801 | * @brief Initialization function for the Q15 PID Control. |
||
| 1802 | * @param[in,out] S points to an instance of the Q15 PID structure. |
||
| 1803 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
| 1804 | */ |
||
| 1805 | void arm_pid_init_q15( |
||
| 1806 | arm_pid_instance_q15 * S, |
||
| 1807 | int32_t resetStateFlag); |
||
| 1808 | |||
| 1809 | |||
| 1810 | /** |
||
| 1811 | * @brief Reset function for the Q15 PID Control. |
||
| 1812 | * @param[in,out] S points to an instance of the q15 PID Control structure |
||
| 1813 | */ |
||
| 1814 | void arm_pid_reset_q15( |
||
| 1815 | arm_pid_instance_q15 * S); |
||
| 1816 | |||
| 1817 | |||
| 1818 | /** |
||
| 1819 | * @brief Instance structure for the floating-point Linear Interpolate function. |
||
| 1820 | */ |
||
| 1821 | typedef struct |
||
| 1822 | { |
||
| 1823 | uint32_t nValues; /**< nValues */ |
||
| 1824 | float32_t x1; /**< x1 */ |
||
| 1825 | float32_t xSpacing; /**< xSpacing */ |
||
| 1826 | float32_t *pYData; /**< pointer to the table of Y values */ |
||
| 1827 | } arm_linear_interp_instance_f32; |
||
| 1828 | |||
| 1829 | /** |
||
| 1830 | * @brief Instance structure for the floating-point bilinear interpolation function. |
||
| 1831 | */ |
||
| 1832 | typedef struct |
||
| 1833 | { |
||
| 1834 | uint16_t numRows; /**< number of rows in the data table. */ |
||
| 1835 | uint16_t numCols; /**< number of columns in the data table. */ |
||
| 1836 | float32_t *pData; /**< points to the data table. */ |
||
| 1837 | } arm_bilinear_interp_instance_f32; |
||
| 1838 | |||
| 1839 | /** |
||
| 1840 | * @brief Instance structure for the Q31 bilinear interpolation function. |
||
| 1841 | */ |
||
| 1842 | typedef struct |
||
| 1843 | { |
||
| 1844 | uint16_t numRows; /**< number of rows in the data table. */ |
||
| 1845 | uint16_t numCols; /**< number of columns in the data table. */ |
||
| 1846 | q31_t *pData; /**< points to the data table. */ |
||
| 1847 | } arm_bilinear_interp_instance_q31; |
||
| 1848 | |||
| 1849 | /** |
||
| 1850 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
| 1851 | */ |
||
| 1852 | typedef struct |
||
| 1853 | { |
||
| 1854 | uint16_t numRows; /**< number of rows in the data table. */ |
||
| 1855 | uint16_t numCols; /**< number of columns in the data table. */ |
||
| 1856 | q15_t *pData; /**< points to the data table. */ |
||
| 1857 | } arm_bilinear_interp_instance_q15; |
||
| 1858 | |||
| 1859 | /** |
||
| 1860 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
| 1861 | */ |
||
| 1862 | typedef struct |
||
| 1863 | { |
||
| 1864 | uint16_t numRows; /**< number of rows in the data table. */ |
||
| 1865 | uint16_t numCols; /**< number of columns in the data table. */ |
||
| 1866 | q7_t *pData; /**< points to the data table. */ |
||
| 1867 | } arm_bilinear_interp_instance_q7; |
||
| 1868 | |||
| 1869 | |||
| 1870 | /** |
||
| 1871 | * @brief Q7 vector multiplication. |
||
| 1872 | * @param[in] pSrcA points to the first input vector |
||
| 1873 | * @param[in] pSrcB points to the second input vector |
||
| 1874 | * @param[out] pDst points to the output vector |
||
| 1875 | * @param[in] blockSize number of samples in each vector |
||
| 1876 | */ |
||
| 1877 | void arm_mult_q7( |
||
| 1878 | q7_t * pSrcA, |
||
| 1879 | q7_t * pSrcB, |
||
| 1880 | q7_t * pDst, |
||
| 1881 | uint32_t blockSize); |
||
| 1882 | |||
| 1883 | |||
| 1884 | /** |
||
| 1885 | * @brief Q15 vector multiplication. |
||
| 1886 | * @param[in] pSrcA points to the first input vector |
||
| 1887 | * @param[in] pSrcB points to the second input vector |
||
| 1888 | * @param[out] pDst points to the output vector |
||
| 1889 | * @param[in] blockSize number of samples in each vector |
||
| 1890 | */ |
||
| 1891 | void arm_mult_q15( |
||
| 1892 | q15_t * pSrcA, |
||
| 1893 | q15_t * pSrcB, |
||
| 1894 | q15_t * pDst, |
||
| 1895 | uint32_t blockSize); |
||
| 1896 | |||
| 1897 | |||
| 1898 | /** |
||
| 1899 | * @brief Q31 vector multiplication. |
||
| 1900 | * @param[in] pSrcA points to the first input vector |
||
| 1901 | * @param[in] pSrcB points to the second input vector |
||
| 1902 | * @param[out] pDst points to the output vector |
||
| 1903 | * @param[in] blockSize number of samples in each vector |
||
| 1904 | */ |
||
| 1905 | void arm_mult_q31( |
||
| 1906 | q31_t * pSrcA, |
||
| 1907 | q31_t * pSrcB, |
||
| 1908 | q31_t * pDst, |
||
| 1909 | uint32_t blockSize); |
||
| 1910 | |||
| 1911 | |||
| 1912 | /** |
||
| 1913 | * @brief Floating-point vector multiplication. |
||
| 1914 | * @param[in] pSrcA points to the first input vector |
||
| 1915 | * @param[in] pSrcB points to the second input vector |
||
| 1916 | * @param[out] pDst points to the output vector |
||
| 1917 | * @param[in] blockSize number of samples in each vector |
||
| 1918 | */ |
||
| 1919 | void arm_mult_f32( |
||
| 1920 | float32_t * pSrcA, |
||
| 1921 | float32_t * pSrcB, |
||
| 1922 | float32_t * pDst, |
||
| 1923 | uint32_t blockSize); |
||
| 1924 | |||
| 1925 | |||
| 1926 | /** |
||
| 1927 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
| 1928 | */ |
||
| 1929 | typedef struct |
||
| 1930 | { |
||
| 1931 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 1932 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
| 1933 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
| 1934 | q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ |
||
| 1935 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 1936 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 1937 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
| 1938 | } arm_cfft_radix2_instance_q15; |
||
| 1939 | |||
| 1940 | /* Deprecated */ |
||
| 1941 | arm_status arm_cfft_radix2_init_q15( |
||
| 1942 | arm_cfft_radix2_instance_q15 * S, |
||
| 1943 | uint16_t fftLen, |
||
| 1944 | uint8_t ifftFlag, |
||
| 1945 | uint8_t bitReverseFlag); |
||
| 1946 | |||
| 1947 | /* Deprecated */ |
||
| 1948 | void arm_cfft_radix2_q15( |
||
| 1949 | const arm_cfft_radix2_instance_q15 * S, |
||
| 1950 | q15_t * pSrc); |
||
| 1951 | |||
| 1952 | |||
| 1953 | /** |
||
| 1954 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
| 1955 | */ |
||
| 1956 | typedef struct |
||
| 1957 | { |
||
| 1958 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 1959 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
| 1960 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
| 1961 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
| 1962 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 1963 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 1964 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
| 1965 | } arm_cfft_radix4_instance_q15; |
||
| 1966 | |||
| 1967 | /* Deprecated */ |
||
| 1968 | arm_status arm_cfft_radix4_init_q15( |
||
| 1969 | arm_cfft_radix4_instance_q15 * S, |
||
| 1970 | uint16_t fftLen, |
||
| 1971 | uint8_t ifftFlag, |
||
| 1972 | uint8_t bitReverseFlag); |
||
| 1973 | |||
| 1974 | /* Deprecated */ |
||
| 1975 | void arm_cfft_radix4_q15( |
||
| 1976 | const arm_cfft_radix4_instance_q15 * S, |
||
| 1977 | q15_t * pSrc); |
||
| 1978 | |||
| 1979 | /** |
||
| 1980 | * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. |
||
| 1981 | */ |
||
| 1982 | typedef struct |
||
| 1983 | { |
||
| 1984 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 1985 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
| 1986 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
| 1987 | q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
| 1988 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 1989 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 1990 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
| 1991 | } arm_cfft_radix2_instance_q31; |
||
| 1992 | |||
| 1993 | /* Deprecated */ |
||
| 1994 | arm_status arm_cfft_radix2_init_q31( |
||
| 1995 | arm_cfft_radix2_instance_q31 * S, |
||
| 1996 | uint16_t fftLen, |
||
| 1997 | uint8_t ifftFlag, |
||
| 1998 | uint8_t bitReverseFlag); |
||
| 1999 | |||
| 2000 | /* Deprecated */ |
||
| 2001 | void arm_cfft_radix2_q31( |
||
| 2002 | const arm_cfft_radix2_instance_q31 * S, |
||
| 2003 | q31_t * pSrc); |
||
| 2004 | |||
| 2005 | /** |
||
| 2006 | * @brief Instance structure for the Q31 CFFT/CIFFT function. |
||
| 2007 | */ |
||
| 2008 | typedef struct |
||
| 2009 | { |
||
| 2010 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 2011 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
| 2012 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
| 2013 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
| 2014 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 2015 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 2016 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
| 2017 | } arm_cfft_radix4_instance_q31; |
||
| 2018 | |||
| 2019 | /* Deprecated */ |
||
| 2020 | void arm_cfft_radix4_q31( |
||
| 2021 | const arm_cfft_radix4_instance_q31 * S, |
||
| 2022 | q31_t * pSrc); |
||
| 2023 | |||
| 2024 | /* Deprecated */ |
||
| 2025 | arm_status arm_cfft_radix4_init_q31( |
||
| 2026 | arm_cfft_radix4_instance_q31 * S, |
||
| 2027 | uint16_t fftLen, |
||
| 2028 | uint8_t ifftFlag, |
||
| 2029 | uint8_t bitReverseFlag); |
||
| 2030 | |||
| 2031 | /** |
||
| 2032 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
| 2033 | */ |
||
| 2034 | typedef struct |
||
| 2035 | { |
||
| 2036 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 2037 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
| 2038 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
| 2039 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
| 2040 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 2041 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 2042 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
| 2043 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
||
| 2044 | } arm_cfft_radix2_instance_f32; |
||
| 2045 | |||
| 2046 | /* Deprecated */ |
||
| 2047 | arm_status arm_cfft_radix2_init_f32( |
||
| 2048 | arm_cfft_radix2_instance_f32 * S, |
||
| 2049 | uint16_t fftLen, |
||
| 2050 | uint8_t ifftFlag, |
||
| 2051 | uint8_t bitReverseFlag); |
||
| 2052 | |||
| 2053 | /* Deprecated */ |
||
| 2054 | void arm_cfft_radix2_f32( |
||
| 2055 | const arm_cfft_radix2_instance_f32 * S, |
||
| 2056 | float32_t * pSrc); |
||
| 2057 | |||
| 2058 | /** |
||
| 2059 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
| 2060 | */ |
||
| 2061 | typedef struct |
||
| 2062 | { |
||
| 2063 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 2064 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
| 2065 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
| 2066 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
| 2067 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 2068 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 2069 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
| 2070 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
||
| 2071 | } arm_cfft_radix4_instance_f32; |
||
| 2072 | |||
| 2073 | /* Deprecated */ |
||
| 2074 | arm_status arm_cfft_radix4_init_f32( |
||
| 2075 | arm_cfft_radix4_instance_f32 * S, |
||
| 2076 | uint16_t fftLen, |
||
| 2077 | uint8_t ifftFlag, |
||
| 2078 | uint8_t bitReverseFlag); |
||
| 2079 | |||
| 2080 | /* Deprecated */ |
||
| 2081 | void arm_cfft_radix4_f32( |
||
| 2082 | const arm_cfft_radix4_instance_f32 * S, |
||
| 2083 | float32_t * pSrc); |
||
| 2084 | |||
| 2085 | /** |
||
| 2086 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
| 2087 | */ |
||
| 2088 | typedef struct |
||
| 2089 | { |
||
| 2090 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 2091 | const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
| 2092 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 2093 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
| 2094 | } arm_cfft_instance_q15; |
||
| 2095 | |||
| 2096 | void arm_cfft_q15( |
||
| 2097 | const arm_cfft_instance_q15 * S, |
||
| 2098 | q15_t * p1, |
||
| 2099 | uint8_t ifftFlag, |
||
| 2100 | uint8_t bitReverseFlag); |
||
| 2101 | |||
| 2102 | /** |
||
| 2103 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
| 2104 | */ |
||
| 2105 | typedef struct |
||
| 2106 | { |
||
| 2107 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 2108 | const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
| 2109 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 2110 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
| 2111 | } arm_cfft_instance_q31; |
||
| 2112 | |||
| 2113 | void arm_cfft_q31( |
||
| 2114 | const arm_cfft_instance_q31 * S, |
||
| 2115 | q31_t * p1, |
||
| 2116 | uint8_t ifftFlag, |
||
| 2117 | uint8_t bitReverseFlag); |
||
| 2118 | |||
| 2119 | /** |
||
| 2120 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
| 2121 | */ |
||
| 2122 | typedef struct |
||
| 2123 | { |
||
| 2124 | uint16_t fftLen; /**< length of the FFT. */ |
||
| 2125 | const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
| 2126 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
| 2127 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
| 2128 | } arm_cfft_instance_f32; |
||
| 2129 | |||
| 2130 | void arm_cfft_f32( |
||
| 2131 | const arm_cfft_instance_f32 * S, |
||
| 2132 | float32_t * p1, |
||
| 2133 | uint8_t ifftFlag, |
||
| 2134 | uint8_t bitReverseFlag); |
||
| 2135 | |||
| 2136 | /** |
||
| 2137 | * @brief Instance structure for the Q15 RFFT/RIFFT function. |
||
| 2138 | */ |
||
| 2139 | typedef struct |
||
| 2140 | { |
||
| 2141 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
| 2142 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
| 2143 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
| 2144 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 2145 | q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
| 2146 | q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
| 2147 | const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
| 2148 | } arm_rfft_instance_q15; |
||
| 2149 | |||
| 2150 | arm_status arm_rfft_init_q15( |
||
| 2151 | arm_rfft_instance_q15 * S, |
||
| 2152 | uint32_t fftLenReal, |
||
| 2153 | uint32_t ifftFlagR, |
||
| 2154 | uint32_t bitReverseFlag); |
||
| 2155 | |||
| 2156 | void arm_rfft_q15( |
||
| 2157 | const arm_rfft_instance_q15 * S, |
||
| 2158 | q15_t * pSrc, |
||
| 2159 | q15_t * pDst); |
||
| 2160 | |||
| 2161 | /** |
||
| 2162 | * @brief Instance structure for the Q31 RFFT/RIFFT function. |
||
| 2163 | */ |
||
| 2164 | typedef struct |
||
| 2165 | { |
||
| 2166 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
| 2167 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
| 2168 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
| 2169 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 2170 | q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
| 2171 | q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
| 2172 | const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
| 2173 | } arm_rfft_instance_q31; |
||
| 2174 | |||
| 2175 | arm_status arm_rfft_init_q31( |
||
| 2176 | arm_rfft_instance_q31 * S, |
||
| 2177 | uint32_t fftLenReal, |
||
| 2178 | uint32_t ifftFlagR, |
||
| 2179 | uint32_t bitReverseFlag); |
||
| 2180 | |||
| 2181 | void arm_rfft_q31( |
||
| 2182 | const arm_rfft_instance_q31 * S, |
||
| 2183 | q31_t * pSrc, |
||
| 2184 | q31_t * pDst); |
||
| 2185 | |||
| 2186 | /** |
||
| 2187 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
| 2188 | */ |
||
| 2189 | typedef struct |
||
| 2190 | { |
||
| 2191 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
| 2192 | uint16_t fftLenBy2; /**< length of the complex FFT. */ |
||
| 2193 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
| 2194 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
| 2195 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
| 2196 | float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
| 2197 | float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
| 2198 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
| 2199 | } arm_rfft_instance_f32; |
||
| 2200 | |||
| 2201 | arm_status arm_rfft_init_f32( |
||
| 2202 | arm_rfft_instance_f32 * S, |
||
| 2203 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
| 2204 | uint32_t fftLenReal, |
||
| 2205 | uint32_t ifftFlagR, |
||
| 2206 | uint32_t bitReverseFlag); |
||
| 2207 | |||
| 2208 | void arm_rfft_f32( |
||
| 2209 | const arm_rfft_instance_f32 * S, |
||
| 2210 | float32_t * pSrc, |
||
| 2211 | float32_t * pDst); |
||
| 2212 | |||
| 2213 | /** |
||
| 2214 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
| 2215 | */ |
||
| 2216 | typedef struct |
||
| 2217 | { |
||
| 2218 | arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ |
||
| 2219 | uint16_t fftLenRFFT; /**< length of the real sequence */ |
||
| 2220 | float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ |
||
| 2221 | } arm_rfft_fast_instance_f32 ; |
||
| 2222 | |||
| 2223 | arm_status arm_rfft_fast_init_f32 ( |
||
| 2224 | arm_rfft_fast_instance_f32 * S, |
||
| 2225 | uint16_t fftLen); |
||
| 2226 | |||
| 2227 | void arm_rfft_fast_f32( |
||
| 2228 | arm_rfft_fast_instance_f32 * S, |
||
| 2229 | float32_t * p, float32_t * pOut, |
||
| 2230 | uint8_t ifftFlag); |
||
| 2231 | |||
| 2232 | /** |
||
| 2233 | * @brief Instance structure for the floating-point DCT4/IDCT4 function. |
||
| 2234 | */ |
||
| 2235 | typedef struct |
||
| 2236 | { |
||
| 2237 | uint16_t N; /**< length of the DCT4. */ |
||
| 2238 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
| 2239 | float32_t normalize; /**< normalizing factor. */ |
||
| 2240 | float32_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
| 2241 | float32_t *pCosFactor; /**< points to the cosFactor table. */ |
||
| 2242 | arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ |
||
| 2243 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
| 2244 | } arm_dct4_instance_f32; |
||
| 2245 | |||
| 2246 | |||
| 2247 | /** |
||
| 2248 | * @brief Initialization function for the floating-point DCT4/IDCT4. |
||
| 2249 | * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. |
||
| 2250 | * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. |
||
| 2251 | * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. |
||
| 2252 | * @param[in] N length of the DCT4. |
||
| 2253 | * @param[in] Nby2 half of the length of the DCT4. |
||
| 2254 | * @param[in] normalize normalizing factor. |
||
| 2255 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. |
||
| 2256 | */ |
||
| 2257 | arm_status arm_dct4_init_f32( |
||
| 2258 | arm_dct4_instance_f32 * S, |
||
| 2259 | arm_rfft_instance_f32 * S_RFFT, |
||
| 2260 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
| 2261 | uint16_t N, |
||
| 2262 | uint16_t Nby2, |
||
| 2263 | float32_t normalize); |
||
| 2264 | |||
| 2265 | |||
| 2266 | /** |
||
| 2267 | * @brief Processing function for the floating-point DCT4/IDCT4. |
||
| 2268 | * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. |
||
| 2269 | * @param[in] pState points to state buffer. |
||
| 2270 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
| 2271 | */ |
||
| 2272 | void arm_dct4_f32( |
||
| 2273 | const arm_dct4_instance_f32 * S, |
||
| 2274 | float32_t * pState, |
||
| 2275 | float32_t * pInlineBuffer); |
||
| 2276 | |||
| 2277 | |||
| 2278 | /** |
||
| 2279 | * @brief Instance structure for the Q31 DCT4/IDCT4 function. |
||
| 2280 | */ |
||
| 2281 | typedef struct |
||
| 2282 | { |
||
| 2283 | uint16_t N; /**< length of the DCT4. */ |
||
| 2284 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
| 2285 | q31_t normalize; /**< normalizing factor. */ |
||
| 2286 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
| 2287 | q31_t *pCosFactor; /**< points to the cosFactor table. */ |
||
| 2288 | arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ |
||
| 2289 | arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
| 2290 | } arm_dct4_instance_q31; |
||
| 2291 | |||
| 2292 | |||
| 2293 | /** |
||
| 2294 | * @brief Initialization function for the Q31 DCT4/IDCT4. |
||
| 2295 | * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. |
||
| 2296 | * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure |
||
| 2297 | * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure |
||
| 2298 | * @param[in] N length of the DCT4. |
||
| 2299 | * @param[in] Nby2 half of the length of the DCT4. |
||
| 2300 | * @param[in] normalize normalizing factor. |
||
| 2301 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
||
| 2302 | */ |
||
| 2303 | arm_status arm_dct4_init_q31( |
||
| 2304 | arm_dct4_instance_q31 * S, |
||
| 2305 | arm_rfft_instance_q31 * S_RFFT, |
||
| 2306 | arm_cfft_radix4_instance_q31 * S_CFFT, |
||
| 2307 | uint16_t N, |
||
| 2308 | uint16_t Nby2, |
||
| 2309 | q31_t normalize); |
||
| 2310 | |||
| 2311 | |||
| 2312 | /** |
||
| 2313 | * @brief Processing function for the Q31 DCT4/IDCT4. |
||
| 2314 | * @param[in] S points to an instance of the Q31 DCT4 structure. |
||
| 2315 | * @param[in] pState points to state buffer. |
||
| 2316 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
| 2317 | */ |
||
| 2318 | void arm_dct4_q31( |
||
| 2319 | const arm_dct4_instance_q31 * S, |
||
| 2320 | q31_t * pState, |
||
| 2321 | q31_t * pInlineBuffer); |
||
| 2322 | |||
| 2323 | |||
| 2324 | /** |
||
| 2325 | * @brief Instance structure for the Q15 DCT4/IDCT4 function. |
||
| 2326 | */ |
||
| 2327 | typedef struct |
||
| 2328 | { |
||
| 2329 | uint16_t N; /**< length of the DCT4. */ |
||
| 2330 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
| 2331 | q15_t normalize; /**< normalizing factor. */ |
||
| 2332 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
| 2333 | q15_t *pCosFactor; /**< points to the cosFactor table. */ |
||
| 2334 | arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ |
||
| 2335 | arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
| 2336 | } arm_dct4_instance_q15; |
||
| 2337 | |||
| 2338 | |||
| 2339 | /** |
||
| 2340 | * @brief Initialization function for the Q15 DCT4/IDCT4. |
||
| 2341 | * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. |
||
| 2342 | * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. |
||
| 2343 | * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. |
||
| 2344 | * @param[in] N length of the DCT4. |
||
| 2345 | * @param[in] Nby2 half of the length of the DCT4. |
||
| 2346 | * @param[in] normalize normalizing factor. |
||
| 2347 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
||
| 2348 | */ |
||
| 2349 | arm_status arm_dct4_init_q15( |
||
| 2350 | arm_dct4_instance_q15 * S, |
||
| 2351 | arm_rfft_instance_q15 * S_RFFT, |
||
| 2352 | arm_cfft_radix4_instance_q15 * S_CFFT, |
||
| 2353 | uint16_t N, |
||
| 2354 | uint16_t Nby2, |
||
| 2355 | q15_t normalize); |
||
| 2356 | |||
| 2357 | |||
| 2358 | /** |
||
| 2359 | * @brief Processing function for the Q15 DCT4/IDCT4. |
||
| 2360 | * @param[in] S points to an instance of the Q15 DCT4 structure. |
||
| 2361 | * @param[in] pState points to state buffer. |
||
| 2362 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
| 2363 | */ |
||
| 2364 | void arm_dct4_q15( |
||
| 2365 | const arm_dct4_instance_q15 * S, |
||
| 2366 | q15_t * pState, |
||
| 2367 | q15_t * pInlineBuffer); |
||
| 2368 | |||
| 2369 | |||
| 2370 | /** |
||
| 2371 | * @brief Floating-point vector addition. |
||
| 2372 | * @param[in] pSrcA points to the first input vector |
||
| 2373 | * @param[in] pSrcB points to the second input vector |
||
| 2374 | * @param[out] pDst points to the output vector |
||
| 2375 | * @param[in] blockSize number of samples in each vector |
||
| 2376 | */ |
||
| 2377 | void arm_add_f32( |
||
| 2378 | float32_t * pSrcA, |
||
| 2379 | float32_t * pSrcB, |
||
| 2380 | float32_t * pDst, |
||
| 2381 | uint32_t blockSize); |
||
| 2382 | |||
| 2383 | |||
| 2384 | /** |
||
| 2385 | * @brief Q7 vector addition. |
||
| 2386 | * @param[in] pSrcA points to the first input vector |
||
| 2387 | * @param[in] pSrcB points to the second input vector |
||
| 2388 | * @param[out] pDst points to the output vector |
||
| 2389 | * @param[in] blockSize number of samples in each vector |
||
| 2390 | */ |
||
| 2391 | void arm_add_q7( |
||
| 2392 | q7_t * pSrcA, |
||
| 2393 | q7_t * pSrcB, |
||
| 2394 | q7_t * pDst, |
||
| 2395 | uint32_t blockSize); |
||
| 2396 | |||
| 2397 | |||
| 2398 | /** |
||
| 2399 | * @brief Q15 vector addition. |
||
| 2400 | * @param[in] pSrcA points to the first input vector |
||
| 2401 | * @param[in] pSrcB points to the second input vector |
||
| 2402 | * @param[out] pDst points to the output vector |
||
| 2403 | * @param[in] blockSize number of samples in each vector |
||
| 2404 | */ |
||
| 2405 | void arm_add_q15( |
||
| 2406 | q15_t * pSrcA, |
||
| 2407 | q15_t * pSrcB, |
||
| 2408 | q15_t * pDst, |
||
| 2409 | uint32_t blockSize); |
||
| 2410 | |||
| 2411 | |||
| 2412 | /** |
||
| 2413 | * @brief Q31 vector addition. |
||
| 2414 | * @param[in] pSrcA points to the first input vector |
||
| 2415 | * @param[in] pSrcB points to the second input vector |
||
| 2416 | * @param[out] pDst points to the output vector |
||
| 2417 | * @param[in] blockSize number of samples in each vector |
||
| 2418 | */ |
||
| 2419 | void arm_add_q31( |
||
| 2420 | q31_t * pSrcA, |
||
| 2421 | q31_t * pSrcB, |
||
| 2422 | q31_t * pDst, |
||
| 2423 | uint32_t blockSize); |
||
| 2424 | |||
| 2425 | |||
| 2426 | /** |
||
| 2427 | * @brief Floating-point vector subtraction. |
||
| 2428 | * @param[in] pSrcA points to the first input vector |
||
| 2429 | * @param[in] pSrcB points to the second input vector |
||
| 2430 | * @param[out] pDst points to the output vector |
||
| 2431 | * @param[in] blockSize number of samples in each vector |
||
| 2432 | */ |
||
| 2433 | void arm_sub_f32( |
||
| 2434 | float32_t * pSrcA, |
||
| 2435 | float32_t * pSrcB, |
||
| 2436 | float32_t * pDst, |
||
| 2437 | uint32_t blockSize); |
||
| 2438 | |||
| 2439 | |||
| 2440 | /** |
||
| 2441 | * @brief Q7 vector subtraction. |
||
| 2442 | * @param[in] pSrcA points to the first input vector |
||
| 2443 | * @param[in] pSrcB points to the second input vector |
||
| 2444 | * @param[out] pDst points to the output vector |
||
| 2445 | * @param[in] blockSize number of samples in each vector |
||
| 2446 | */ |
||
| 2447 | void arm_sub_q7( |
||
| 2448 | q7_t * pSrcA, |
||
| 2449 | q7_t * pSrcB, |
||
| 2450 | q7_t * pDst, |
||
| 2451 | uint32_t blockSize); |
||
| 2452 | |||
| 2453 | |||
| 2454 | /** |
||
| 2455 | * @brief Q15 vector subtraction. |
||
| 2456 | * @param[in] pSrcA points to the first input vector |
||
| 2457 | * @param[in] pSrcB points to the second input vector |
||
| 2458 | * @param[out] pDst points to the output vector |
||
| 2459 | * @param[in] blockSize number of samples in each vector |
||
| 2460 | */ |
||
| 2461 | void arm_sub_q15( |
||
| 2462 | q15_t * pSrcA, |
||
| 2463 | q15_t * pSrcB, |
||
| 2464 | q15_t * pDst, |
||
| 2465 | uint32_t blockSize); |
||
| 2466 | |||
| 2467 | |||
| 2468 | /** |
||
| 2469 | * @brief Q31 vector subtraction. |
||
| 2470 | * @param[in] pSrcA points to the first input vector |
||
| 2471 | * @param[in] pSrcB points to the second input vector |
||
| 2472 | * @param[out] pDst points to the output vector |
||
| 2473 | * @param[in] blockSize number of samples in each vector |
||
| 2474 | */ |
||
| 2475 | void arm_sub_q31( |
||
| 2476 | q31_t * pSrcA, |
||
| 2477 | q31_t * pSrcB, |
||
| 2478 | q31_t * pDst, |
||
| 2479 | uint32_t blockSize); |
||
| 2480 | |||
| 2481 | |||
| 2482 | /** |
||
| 2483 | * @brief Multiplies a floating-point vector by a scalar. |
||
| 2484 | * @param[in] pSrc points to the input vector |
||
| 2485 | * @param[in] scale scale factor to be applied |
||
| 2486 | * @param[out] pDst points to the output vector |
||
| 2487 | * @param[in] blockSize number of samples in the vector |
||
| 2488 | */ |
||
| 2489 | void arm_scale_f32( |
||
| 2490 | float32_t * pSrc, |
||
| 2491 | float32_t scale, |
||
| 2492 | float32_t * pDst, |
||
| 2493 | uint32_t blockSize); |
||
| 2494 | |||
| 2495 | |||
| 2496 | /** |
||
| 2497 | * @brief Multiplies a Q7 vector by a scalar. |
||
| 2498 | * @param[in] pSrc points to the input vector |
||
| 2499 | * @param[in] scaleFract fractional portion of the scale value |
||
| 2500 | * @param[in] shift number of bits to shift the result by |
||
| 2501 | * @param[out] pDst points to the output vector |
||
| 2502 | * @param[in] blockSize number of samples in the vector |
||
| 2503 | */ |
||
| 2504 | void arm_scale_q7( |
||
| 2505 | q7_t * pSrc, |
||
| 2506 | q7_t scaleFract, |
||
| 2507 | int8_t shift, |
||
| 2508 | q7_t * pDst, |
||
| 2509 | uint32_t blockSize); |
||
| 2510 | |||
| 2511 | |||
| 2512 | /** |
||
| 2513 | * @brief Multiplies a Q15 vector by a scalar. |
||
| 2514 | * @param[in] pSrc points to the input vector |
||
| 2515 | * @param[in] scaleFract fractional portion of the scale value |
||
| 2516 | * @param[in] shift number of bits to shift the result by |
||
| 2517 | * @param[out] pDst points to the output vector |
||
| 2518 | * @param[in] blockSize number of samples in the vector |
||
| 2519 | */ |
||
| 2520 | void arm_scale_q15( |
||
| 2521 | q15_t * pSrc, |
||
| 2522 | q15_t scaleFract, |
||
| 2523 | int8_t shift, |
||
| 2524 | q15_t * pDst, |
||
| 2525 | uint32_t blockSize); |
||
| 2526 | |||
| 2527 | |||
| 2528 | /** |
||
| 2529 | * @brief Multiplies a Q31 vector by a scalar. |
||
| 2530 | * @param[in] pSrc points to the input vector |
||
| 2531 | * @param[in] scaleFract fractional portion of the scale value |
||
| 2532 | * @param[in] shift number of bits to shift the result by |
||
| 2533 | * @param[out] pDst points to the output vector |
||
| 2534 | * @param[in] blockSize number of samples in the vector |
||
| 2535 | */ |
||
| 2536 | void arm_scale_q31( |
||
| 2537 | q31_t * pSrc, |
||
| 2538 | q31_t scaleFract, |
||
| 2539 | int8_t shift, |
||
| 2540 | q31_t * pDst, |
||
| 2541 | uint32_t blockSize); |
||
| 2542 | |||
| 2543 | |||
| 2544 | /** |
||
| 2545 | * @brief Q7 vector absolute value. |
||
| 2546 | * @param[in] pSrc points to the input buffer |
||
| 2547 | * @param[out] pDst points to the output buffer |
||
| 2548 | * @param[in] blockSize number of samples in each vector |
||
| 2549 | */ |
||
| 2550 | void arm_abs_q7( |
||
| 2551 | q7_t * pSrc, |
||
| 2552 | q7_t * pDst, |
||
| 2553 | uint32_t blockSize); |
||
| 2554 | |||
| 2555 | |||
| 2556 | /** |
||
| 2557 | * @brief Floating-point vector absolute value. |
||
| 2558 | * @param[in] pSrc points to the input buffer |
||
| 2559 | * @param[out] pDst points to the output buffer |
||
| 2560 | * @param[in] blockSize number of samples in each vector |
||
| 2561 | */ |
||
| 2562 | void arm_abs_f32( |
||
| 2563 | float32_t * pSrc, |
||
| 2564 | float32_t * pDst, |
||
| 2565 | uint32_t blockSize); |
||
| 2566 | |||
| 2567 | |||
| 2568 | /** |
||
| 2569 | * @brief Q15 vector absolute value. |
||
| 2570 | * @param[in] pSrc points to the input buffer |
||
| 2571 | * @param[out] pDst points to the output buffer |
||
| 2572 | * @param[in] blockSize number of samples in each vector |
||
| 2573 | */ |
||
| 2574 | void arm_abs_q15( |
||
| 2575 | q15_t * pSrc, |
||
| 2576 | q15_t * pDst, |
||
| 2577 | uint32_t blockSize); |
||
| 2578 | |||
| 2579 | |||
| 2580 | /** |
||
| 2581 | * @brief Q31 vector absolute value. |
||
| 2582 | * @param[in] pSrc points to the input buffer |
||
| 2583 | * @param[out] pDst points to the output buffer |
||
| 2584 | * @param[in] blockSize number of samples in each vector |
||
| 2585 | */ |
||
| 2586 | void arm_abs_q31( |
||
| 2587 | q31_t * pSrc, |
||
| 2588 | q31_t * pDst, |
||
| 2589 | uint32_t blockSize); |
||
| 2590 | |||
| 2591 | |||
| 2592 | /** |
||
| 2593 | * @brief Dot product of floating-point vectors. |
||
| 2594 | * @param[in] pSrcA points to the first input vector |
||
| 2595 | * @param[in] pSrcB points to the second input vector |
||
| 2596 | * @param[in] blockSize number of samples in each vector |
||
| 2597 | * @param[out] result output result returned here |
||
| 2598 | */ |
||
| 2599 | void arm_dot_prod_f32( |
||
| 2600 | float32_t * pSrcA, |
||
| 2601 | float32_t * pSrcB, |
||
| 2602 | uint32_t blockSize, |
||
| 2603 | float32_t * result); |
||
| 2604 | |||
| 2605 | |||
| 2606 | /** |
||
| 2607 | * @brief Dot product of Q7 vectors. |
||
| 2608 | * @param[in] pSrcA points to the first input vector |
||
| 2609 | * @param[in] pSrcB points to the second input vector |
||
| 2610 | * @param[in] blockSize number of samples in each vector |
||
| 2611 | * @param[out] result output result returned here |
||
| 2612 | */ |
||
| 2613 | void arm_dot_prod_q7( |
||
| 2614 | q7_t * pSrcA, |
||
| 2615 | q7_t * pSrcB, |
||
| 2616 | uint32_t blockSize, |
||
| 2617 | q31_t * result); |
||
| 2618 | |||
| 2619 | |||
| 2620 | /** |
||
| 2621 | * @brief Dot product of Q15 vectors. |
||
| 2622 | * @param[in] pSrcA points to the first input vector |
||
| 2623 | * @param[in] pSrcB points to the second input vector |
||
| 2624 | * @param[in] blockSize number of samples in each vector |
||
| 2625 | * @param[out] result output result returned here |
||
| 2626 | */ |
||
| 2627 | void arm_dot_prod_q15( |
||
| 2628 | q15_t * pSrcA, |
||
| 2629 | q15_t * pSrcB, |
||
| 2630 | uint32_t blockSize, |
||
| 2631 | q63_t * result); |
||
| 2632 | |||
| 2633 | |||
| 2634 | /** |
||
| 2635 | * @brief Dot product of Q31 vectors. |
||
| 2636 | * @param[in] pSrcA points to the first input vector |
||
| 2637 | * @param[in] pSrcB points to the second input vector |
||
| 2638 | * @param[in] blockSize number of samples in each vector |
||
| 2639 | * @param[out] result output result returned here |
||
| 2640 | */ |
||
| 2641 | void arm_dot_prod_q31( |
||
| 2642 | q31_t * pSrcA, |
||
| 2643 | q31_t * pSrcB, |
||
| 2644 | uint32_t blockSize, |
||
| 2645 | q63_t * result); |
||
| 2646 | |||
| 2647 | |||
| 2648 | /** |
||
| 2649 | * @brief Shifts the elements of a Q7 vector a specified number of bits. |
||
| 2650 | * @param[in] pSrc points to the input vector |
||
| 2651 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
| 2652 | * @param[out] pDst points to the output vector |
||
| 2653 | * @param[in] blockSize number of samples in the vector |
||
| 2654 | */ |
||
| 2655 | void arm_shift_q7( |
||
| 2656 | q7_t * pSrc, |
||
| 2657 | int8_t shiftBits, |
||
| 2658 | q7_t * pDst, |
||
| 2659 | uint32_t blockSize); |
||
| 2660 | |||
| 2661 | |||
| 2662 | /** |
||
| 2663 | * @brief Shifts the elements of a Q15 vector a specified number of bits. |
||
| 2664 | * @param[in] pSrc points to the input vector |
||
| 2665 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
| 2666 | * @param[out] pDst points to the output vector |
||
| 2667 | * @param[in] blockSize number of samples in the vector |
||
| 2668 | */ |
||
| 2669 | void arm_shift_q15( |
||
| 2670 | q15_t * pSrc, |
||
| 2671 | int8_t shiftBits, |
||
| 2672 | q15_t * pDst, |
||
| 2673 | uint32_t blockSize); |
||
| 2674 | |||
| 2675 | |||
| 2676 | /** |
||
| 2677 | * @brief Shifts the elements of a Q31 vector a specified number of bits. |
||
| 2678 | * @param[in] pSrc points to the input vector |
||
| 2679 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
| 2680 | * @param[out] pDst points to the output vector |
||
| 2681 | * @param[in] blockSize number of samples in the vector |
||
| 2682 | */ |
||
| 2683 | void arm_shift_q31( |
||
| 2684 | q31_t * pSrc, |
||
| 2685 | int8_t shiftBits, |
||
| 2686 | q31_t * pDst, |
||
| 2687 | uint32_t blockSize); |
||
| 2688 | |||
| 2689 | |||
| 2690 | /** |
||
| 2691 | * @brief Adds a constant offset to a floating-point vector. |
||
| 2692 | * @param[in] pSrc points to the input vector |
||
| 2693 | * @param[in] offset is the offset to be added |
||
| 2694 | * @param[out] pDst points to the output vector |
||
| 2695 | * @param[in] blockSize number of samples in the vector |
||
| 2696 | */ |
||
| 2697 | void arm_offset_f32( |
||
| 2698 | float32_t * pSrc, |
||
| 2699 | float32_t offset, |
||
| 2700 | float32_t * pDst, |
||
| 2701 | uint32_t blockSize); |
||
| 2702 | |||
| 2703 | |||
| 2704 | /** |
||
| 2705 | * @brief Adds a constant offset to a Q7 vector. |
||
| 2706 | * @param[in] pSrc points to the input vector |
||
| 2707 | * @param[in] offset is the offset to be added |
||
| 2708 | * @param[out] pDst points to the output vector |
||
| 2709 | * @param[in] blockSize number of samples in the vector |
||
| 2710 | */ |
||
| 2711 | void arm_offset_q7( |
||
| 2712 | q7_t * pSrc, |
||
| 2713 | q7_t offset, |
||
| 2714 | q7_t * pDst, |
||
| 2715 | uint32_t blockSize); |
||
| 2716 | |||
| 2717 | |||
| 2718 | /** |
||
| 2719 | * @brief Adds a constant offset to a Q15 vector. |
||
| 2720 | * @param[in] pSrc points to the input vector |
||
| 2721 | * @param[in] offset is the offset to be added |
||
| 2722 | * @param[out] pDst points to the output vector |
||
| 2723 | * @param[in] blockSize number of samples in the vector |
||
| 2724 | */ |
||
| 2725 | void arm_offset_q15( |
||
| 2726 | q15_t * pSrc, |
||
| 2727 | q15_t offset, |
||
| 2728 | q15_t * pDst, |
||
| 2729 | uint32_t blockSize); |
||
| 2730 | |||
| 2731 | |||
| 2732 | /** |
||
| 2733 | * @brief Adds a constant offset to a Q31 vector. |
||
| 2734 | * @param[in] pSrc points to the input vector |
||
| 2735 | * @param[in] offset is the offset to be added |
||
| 2736 | * @param[out] pDst points to the output vector |
||
| 2737 | * @param[in] blockSize number of samples in the vector |
||
| 2738 | */ |
||
| 2739 | void arm_offset_q31( |
||
| 2740 | q31_t * pSrc, |
||
| 2741 | q31_t offset, |
||
| 2742 | q31_t * pDst, |
||
| 2743 | uint32_t blockSize); |
||
| 2744 | |||
| 2745 | |||
| 2746 | /** |
||
| 2747 | * @brief Negates the elements of a floating-point vector. |
||
| 2748 | * @param[in] pSrc points to the input vector |
||
| 2749 | * @param[out] pDst points to the output vector |
||
| 2750 | * @param[in] blockSize number of samples in the vector |
||
| 2751 | */ |
||
| 2752 | void arm_negate_f32( |
||
| 2753 | float32_t * pSrc, |
||
| 2754 | float32_t * pDst, |
||
| 2755 | uint32_t blockSize); |
||
| 2756 | |||
| 2757 | |||
| 2758 | /** |
||
| 2759 | * @brief Negates the elements of a Q7 vector. |
||
| 2760 | * @param[in] pSrc points to the input vector |
||
| 2761 | * @param[out] pDst points to the output vector |
||
| 2762 | * @param[in] blockSize number of samples in the vector |
||
| 2763 | */ |
||
| 2764 | void arm_negate_q7( |
||
| 2765 | q7_t * pSrc, |
||
| 2766 | q7_t * pDst, |
||
| 2767 | uint32_t blockSize); |
||
| 2768 | |||
| 2769 | |||
| 2770 | /** |
||
| 2771 | * @brief Negates the elements of a Q15 vector. |
||
| 2772 | * @param[in] pSrc points to the input vector |
||
| 2773 | * @param[out] pDst points to the output vector |
||
| 2774 | * @param[in] blockSize number of samples in the vector |
||
| 2775 | */ |
||
| 2776 | void arm_negate_q15( |
||
| 2777 | q15_t * pSrc, |
||
| 2778 | q15_t * pDst, |
||
| 2779 | uint32_t blockSize); |
||
| 2780 | |||
| 2781 | |||
| 2782 | /** |
||
| 2783 | * @brief Negates the elements of a Q31 vector. |
||
| 2784 | * @param[in] pSrc points to the input vector |
||
| 2785 | * @param[out] pDst points to the output vector |
||
| 2786 | * @param[in] blockSize number of samples in the vector |
||
| 2787 | */ |
||
| 2788 | void arm_negate_q31( |
||
| 2789 | q31_t * pSrc, |
||
| 2790 | q31_t * pDst, |
||
| 2791 | uint32_t blockSize); |
||
| 2792 | |||
| 2793 | |||
| 2794 | /** |
||
| 2795 | * @brief Copies the elements of a floating-point vector. |
||
| 2796 | * @param[in] pSrc input pointer |
||
| 2797 | * @param[out] pDst output pointer |
||
| 2798 | * @param[in] blockSize number of samples to process |
||
| 2799 | */ |
||
| 2800 | void arm_copy_f32( |
||
| 2801 | float32_t * pSrc, |
||
| 2802 | float32_t * pDst, |
||
| 2803 | uint32_t blockSize); |
||
| 2804 | |||
| 2805 | |||
| 2806 | /** |
||
| 2807 | * @brief Copies the elements of a Q7 vector. |
||
| 2808 | * @param[in] pSrc input pointer |
||
| 2809 | * @param[out] pDst output pointer |
||
| 2810 | * @param[in] blockSize number of samples to process |
||
| 2811 | */ |
||
| 2812 | void arm_copy_q7( |
||
| 2813 | q7_t * pSrc, |
||
| 2814 | q7_t * pDst, |
||
| 2815 | uint32_t blockSize); |
||
| 2816 | |||
| 2817 | |||
| 2818 | /** |
||
| 2819 | * @brief Copies the elements of a Q15 vector. |
||
| 2820 | * @param[in] pSrc input pointer |
||
| 2821 | * @param[out] pDst output pointer |
||
| 2822 | * @param[in] blockSize number of samples to process |
||
| 2823 | */ |
||
| 2824 | void arm_copy_q15( |
||
| 2825 | q15_t * pSrc, |
||
| 2826 | q15_t * pDst, |
||
| 2827 | uint32_t blockSize); |
||
| 2828 | |||
| 2829 | |||
| 2830 | /** |
||
| 2831 | * @brief Copies the elements of a Q31 vector. |
||
| 2832 | * @param[in] pSrc input pointer |
||
| 2833 | * @param[out] pDst output pointer |
||
| 2834 | * @param[in] blockSize number of samples to process |
||
| 2835 | */ |
||
| 2836 | void arm_copy_q31( |
||
| 2837 | q31_t * pSrc, |
||
| 2838 | q31_t * pDst, |
||
| 2839 | uint32_t blockSize); |
||
| 2840 | |||
| 2841 | |||
| 2842 | /** |
||
| 2843 | * @brief Fills a constant value into a floating-point vector. |
||
| 2844 | * @param[in] value input value to be filled |
||
| 2845 | * @param[out] pDst output pointer |
||
| 2846 | * @param[in] blockSize number of samples to process |
||
| 2847 | */ |
||
| 2848 | void arm_fill_f32( |
||
| 2849 | float32_t value, |
||
| 2850 | float32_t * pDst, |
||
| 2851 | uint32_t blockSize); |
||
| 2852 | |||
| 2853 | |||
| 2854 | /** |
||
| 2855 | * @brief Fills a constant value into a Q7 vector. |
||
| 2856 | * @param[in] value input value to be filled |
||
| 2857 | * @param[out] pDst output pointer |
||
| 2858 | * @param[in] blockSize number of samples to process |
||
| 2859 | */ |
||
| 2860 | void arm_fill_q7( |
||
| 2861 | q7_t value, |
||
| 2862 | q7_t * pDst, |
||
| 2863 | uint32_t blockSize); |
||
| 2864 | |||
| 2865 | |||
| 2866 | /** |
||
| 2867 | * @brief Fills a constant value into a Q15 vector. |
||
| 2868 | * @param[in] value input value to be filled |
||
| 2869 | * @param[out] pDst output pointer |
||
| 2870 | * @param[in] blockSize number of samples to process |
||
| 2871 | */ |
||
| 2872 | void arm_fill_q15( |
||
| 2873 | q15_t value, |
||
| 2874 | q15_t * pDst, |
||
| 2875 | uint32_t blockSize); |
||
| 2876 | |||
| 2877 | |||
| 2878 | /** |
||
| 2879 | * @brief Fills a constant value into a Q31 vector. |
||
| 2880 | * @param[in] value input value to be filled |
||
| 2881 | * @param[out] pDst output pointer |
||
| 2882 | * @param[in] blockSize number of samples to process |
||
| 2883 | */ |
||
| 2884 | void arm_fill_q31( |
||
| 2885 | q31_t value, |
||
| 2886 | q31_t * pDst, |
||
| 2887 | uint32_t blockSize); |
||
| 2888 | |||
| 2889 | |||
| 2890 | /** |
||
| 2891 | * @brief Convolution of floating-point sequences. |
||
| 2892 | * @param[in] pSrcA points to the first input sequence. |
||
| 2893 | * @param[in] srcALen length of the first input sequence. |
||
| 2894 | * @param[in] pSrcB points to the second input sequence. |
||
| 2895 | * @param[in] srcBLen length of the second input sequence. |
||
| 2896 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
| 2897 | */ |
||
| 2898 | void arm_conv_f32( |
||
| 2899 | float32_t * pSrcA, |
||
| 2900 | uint32_t srcALen, |
||
| 2901 | float32_t * pSrcB, |
||
| 2902 | uint32_t srcBLen, |
||
| 2903 | float32_t * pDst); |
||
| 2904 | |||
| 2905 | |||
| 2906 | /** |
||
| 2907 | * @brief Convolution of Q15 sequences. |
||
| 2908 | * @param[in] pSrcA points to the first input sequence. |
||
| 2909 | * @param[in] srcALen length of the first input sequence. |
||
| 2910 | * @param[in] pSrcB points to the second input sequence. |
||
| 2911 | * @param[in] srcBLen length of the second input sequence. |
||
| 2912 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
| 2913 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 2914 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
| 2915 | */ |
||
| 2916 | void arm_conv_opt_q15( |
||
| 2917 | q15_t * pSrcA, |
||
| 2918 | uint32_t srcALen, |
||
| 2919 | q15_t * pSrcB, |
||
| 2920 | uint32_t srcBLen, |
||
| 2921 | q15_t * pDst, |
||
| 2922 | q15_t * pScratch1, |
||
| 2923 | q15_t * pScratch2); |
||
| 2924 | |||
| 2925 | |||
| 2926 | /** |
||
| 2927 | * @brief Convolution of Q15 sequences. |
||
| 2928 | * @param[in] pSrcA points to the first input sequence. |
||
| 2929 | * @param[in] srcALen length of the first input sequence. |
||
| 2930 | * @param[in] pSrcB points to the second input sequence. |
||
| 2931 | * @param[in] srcBLen length of the second input sequence. |
||
| 2932 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
| 2933 | */ |
||
| 2934 | void arm_conv_q15( |
||
| 2935 | q15_t * pSrcA, |
||
| 2936 | uint32_t srcALen, |
||
| 2937 | q15_t * pSrcB, |
||
| 2938 | uint32_t srcBLen, |
||
| 2939 | q15_t * pDst); |
||
| 2940 | |||
| 2941 | |||
| 2942 | /** |
||
| 2943 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
| 2944 | * @param[in] pSrcA points to the first input sequence. |
||
| 2945 | * @param[in] srcALen length of the first input sequence. |
||
| 2946 | * @param[in] pSrcB points to the second input sequence. |
||
| 2947 | * @param[in] srcBLen length of the second input sequence. |
||
| 2948 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
| 2949 | */ |
||
| 2950 | void arm_conv_fast_q15( |
||
| 2951 | q15_t * pSrcA, |
||
| 2952 | uint32_t srcALen, |
||
| 2953 | q15_t * pSrcB, |
||
| 2954 | uint32_t srcBLen, |
||
| 2955 | q15_t * pDst); |
||
| 2956 | |||
| 2957 | |||
| 2958 | /** |
||
| 2959 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
| 2960 | * @param[in] pSrcA points to the first input sequence. |
||
| 2961 | * @param[in] srcALen length of the first input sequence. |
||
| 2962 | * @param[in] pSrcB points to the second input sequence. |
||
| 2963 | * @param[in] srcBLen length of the second input sequence. |
||
| 2964 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
| 2965 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 2966 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
| 2967 | */ |
||
| 2968 | void arm_conv_fast_opt_q15( |
||
| 2969 | q15_t * pSrcA, |
||
| 2970 | uint32_t srcALen, |
||
| 2971 | q15_t * pSrcB, |
||
| 2972 | uint32_t srcBLen, |
||
| 2973 | q15_t * pDst, |
||
| 2974 | q15_t * pScratch1, |
||
| 2975 | q15_t * pScratch2); |
||
| 2976 | |||
| 2977 | |||
| 2978 | /** |
||
| 2979 | * @brief Convolution of Q31 sequences. |
||
| 2980 | * @param[in] pSrcA points to the first input sequence. |
||
| 2981 | * @param[in] srcALen length of the first input sequence. |
||
| 2982 | * @param[in] pSrcB points to the second input sequence. |
||
| 2983 | * @param[in] srcBLen length of the second input sequence. |
||
| 2984 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
| 2985 | */ |
||
| 2986 | void arm_conv_q31( |
||
| 2987 | q31_t * pSrcA, |
||
| 2988 | uint32_t srcALen, |
||
| 2989 | q31_t * pSrcB, |
||
| 2990 | uint32_t srcBLen, |
||
| 2991 | q31_t * pDst); |
||
| 2992 | |||
| 2993 | |||
| 2994 | /** |
||
| 2995 | * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
| 2996 | * @param[in] pSrcA points to the first input sequence. |
||
| 2997 | * @param[in] srcALen length of the first input sequence. |
||
| 2998 | * @param[in] pSrcB points to the second input sequence. |
||
| 2999 | * @param[in] srcBLen length of the second input sequence. |
||
| 3000 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
| 3001 | */ |
||
| 3002 | void arm_conv_fast_q31( |
||
| 3003 | q31_t * pSrcA, |
||
| 3004 | uint32_t srcALen, |
||
| 3005 | q31_t * pSrcB, |
||
| 3006 | uint32_t srcBLen, |
||
| 3007 | q31_t * pDst); |
||
| 3008 | |||
| 3009 | |||
| 3010 | /** |
||
| 3011 | * @brief Convolution of Q7 sequences. |
||
| 3012 | * @param[in] pSrcA points to the first input sequence. |
||
| 3013 | * @param[in] srcALen length of the first input sequence. |
||
| 3014 | * @param[in] pSrcB points to the second input sequence. |
||
| 3015 | * @param[in] srcBLen length of the second input sequence. |
||
| 3016 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
| 3017 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 3018 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
| 3019 | */ |
||
| 3020 | void arm_conv_opt_q7( |
||
| 3021 | q7_t * pSrcA, |
||
| 3022 | uint32_t srcALen, |
||
| 3023 | q7_t * pSrcB, |
||
| 3024 | uint32_t srcBLen, |
||
| 3025 | q7_t * pDst, |
||
| 3026 | q15_t * pScratch1, |
||
| 3027 | q15_t * pScratch2); |
||
| 3028 | |||
| 3029 | |||
| 3030 | /** |
||
| 3031 | * @brief Convolution of Q7 sequences. |
||
| 3032 | * @param[in] pSrcA points to the first input sequence. |
||
| 3033 | * @param[in] srcALen length of the first input sequence. |
||
| 3034 | * @param[in] pSrcB points to the second input sequence. |
||
| 3035 | * @param[in] srcBLen length of the second input sequence. |
||
| 3036 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
| 3037 | */ |
||
| 3038 | void arm_conv_q7( |
||
| 3039 | q7_t * pSrcA, |
||
| 3040 | uint32_t srcALen, |
||
| 3041 | q7_t * pSrcB, |
||
| 3042 | uint32_t srcBLen, |
||
| 3043 | q7_t * pDst); |
||
| 3044 | |||
| 3045 | |||
| 3046 | /** |
||
| 3047 | * @brief Partial convolution of floating-point sequences. |
||
| 3048 | * @param[in] pSrcA points to the first input sequence. |
||
| 3049 | * @param[in] srcALen length of the first input sequence. |
||
| 3050 | * @param[in] pSrcB points to the second input sequence. |
||
| 3051 | * @param[in] srcBLen length of the second input sequence. |
||
| 3052 | * @param[out] pDst points to the block of output data |
||
| 3053 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3054 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3055 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3056 | */ |
||
| 3057 | arm_status arm_conv_partial_f32( |
||
| 3058 | float32_t * pSrcA, |
||
| 3059 | uint32_t srcALen, |
||
| 3060 | float32_t * pSrcB, |
||
| 3061 | uint32_t srcBLen, |
||
| 3062 | float32_t * pDst, |
||
| 3063 | uint32_t firstIndex, |
||
| 3064 | uint32_t numPoints); |
||
| 3065 | |||
| 3066 | |||
| 3067 | /** |
||
| 3068 | * @brief Partial convolution of Q15 sequences. |
||
| 3069 | * @param[in] pSrcA points to the first input sequence. |
||
| 3070 | * @param[in] srcALen length of the first input sequence. |
||
| 3071 | * @param[in] pSrcB points to the second input sequence. |
||
| 3072 | * @param[in] srcBLen length of the second input sequence. |
||
| 3073 | * @param[out] pDst points to the block of output data |
||
| 3074 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3075 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3076 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 3077 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
| 3078 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3079 | */ |
||
| 3080 | arm_status arm_conv_partial_opt_q15( |
||
| 3081 | q15_t * pSrcA, |
||
| 3082 | uint32_t srcALen, |
||
| 3083 | q15_t * pSrcB, |
||
| 3084 | uint32_t srcBLen, |
||
| 3085 | q15_t * pDst, |
||
| 3086 | uint32_t firstIndex, |
||
| 3087 | uint32_t numPoints, |
||
| 3088 | q15_t * pScratch1, |
||
| 3089 | q15_t * pScratch2); |
||
| 3090 | |||
| 3091 | |||
| 3092 | /** |
||
| 3093 | * @brief Partial convolution of Q15 sequences. |
||
| 3094 | * @param[in] pSrcA points to the first input sequence. |
||
| 3095 | * @param[in] srcALen length of the first input sequence. |
||
| 3096 | * @param[in] pSrcB points to the second input sequence. |
||
| 3097 | * @param[in] srcBLen length of the second input sequence. |
||
| 3098 | * @param[out] pDst points to the block of output data |
||
| 3099 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3100 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3101 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3102 | */ |
||
| 3103 | arm_status arm_conv_partial_q15( |
||
| 3104 | q15_t * pSrcA, |
||
| 3105 | uint32_t srcALen, |
||
| 3106 | q15_t * pSrcB, |
||
| 3107 | uint32_t srcBLen, |
||
| 3108 | q15_t * pDst, |
||
| 3109 | uint32_t firstIndex, |
||
| 3110 | uint32_t numPoints); |
||
| 3111 | |||
| 3112 | |||
| 3113 | /** |
||
| 3114 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
| 3115 | * @param[in] pSrcA points to the first input sequence. |
||
| 3116 | * @param[in] srcALen length of the first input sequence. |
||
| 3117 | * @param[in] pSrcB points to the second input sequence. |
||
| 3118 | * @param[in] srcBLen length of the second input sequence. |
||
| 3119 | * @param[out] pDst points to the block of output data |
||
| 3120 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3121 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3122 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3123 | */ |
||
| 3124 | arm_status arm_conv_partial_fast_q15( |
||
| 3125 | q15_t * pSrcA, |
||
| 3126 | uint32_t srcALen, |
||
| 3127 | q15_t * pSrcB, |
||
| 3128 | uint32_t srcBLen, |
||
| 3129 | q15_t * pDst, |
||
| 3130 | uint32_t firstIndex, |
||
| 3131 | uint32_t numPoints); |
||
| 3132 | |||
| 3133 | |||
| 3134 | /** |
||
| 3135 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
| 3136 | * @param[in] pSrcA points to the first input sequence. |
||
| 3137 | * @param[in] srcALen length of the first input sequence. |
||
| 3138 | * @param[in] pSrcB points to the second input sequence. |
||
| 3139 | * @param[in] srcBLen length of the second input sequence. |
||
| 3140 | * @param[out] pDst points to the block of output data |
||
| 3141 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3142 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3143 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 3144 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
| 3145 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3146 | */ |
||
| 3147 | arm_status arm_conv_partial_fast_opt_q15( |
||
| 3148 | q15_t * pSrcA, |
||
| 3149 | uint32_t srcALen, |
||
| 3150 | q15_t * pSrcB, |
||
| 3151 | uint32_t srcBLen, |
||
| 3152 | q15_t * pDst, |
||
| 3153 | uint32_t firstIndex, |
||
| 3154 | uint32_t numPoints, |
||
| 3155 | q15_t * pScratch1, |
||
| 3156 | q15_t * pScratch2); |
||
| 3157 | |||
| 3158 | |||
| 3159 | /** |
||
| 3160 | * @brief Partial convolution of Q31 sequences. |
||
| 3161 | * @param[in] pSrcA points to the first input sequence. |
||
| 3162 | * @param[in] srcALen length of the first input sequence. |
||
| 3163 | * @param[in] pSrcB points to the second input sequence. |
||
| 3164 | * @param[in] srcBLen length of the second input sequence. |
||
| 3165 | * @param[out] pDst points to the block of output data |
||
| 3166 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3167 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3168 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3169 | */ |
||
| 3170 | arm_status arm_conv_partial_q31( |
||
| 3171 | q31_t * pSrcA, |
||
| 3172 | uint32_t srcALen, |
||
| 3173 | q31_t * pSrcB, |
||
| 3174 | uint32_t srcBLen, |
||
| 3175 | q31_t * pDst, |
||
| 3176 | uint32_t firstIndex, |
||
| 3177 | uint32_t numPoints); |
||
| 3178 | |||
| 3179 | |||
| 3180 | /** |
||
| 3181 | * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
| 3182 | * @param[in] pSrcA points to the first input sequence. |
||
| 3183 | * @param[in] srcALen length of the first input sequence. |
||
| 3184 | * @param[in] pSrcB points to the second input sequence. |
||
| 3185 | * @param[in] srcBLen length of the second input sequence. |
||
| 3186 | * @param[out] pDst points to the block of output data |
||
| 3187 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3188 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3189 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3190 | */ |
||
| 3191 | arm_status arm_conv_partial_fast_q31( |
||
| 3192 | q31_t * pSrcA, |
||
| 3193 | uint32_t srcALen, |
||
| 3194 | q31_t * pSrcB, |
||
| 3195 | uint32_t srcBLen, |
||
| 3196 | q31_t * pDst, |
||
| 3197 | uint32_t firstIndex, |
||
| 3198 | uint32_t numPoints); |
||
| 3199 | |||
| 3200 | |||
| 3201 | /** |
||
| 3202 | * @brief Partial convolution of Q7 sequences |
||
| 3203 | * @param[in] pSrcA points to the first input sequence. |
||
| 3204 | * @param[in] srcALen length of the first input sequence. |
||
| 3205 | * @param[in] pSrcB points to the second input sequence. |
||
| 3206 | * @param[in] srcBLen length of the second input sequence. |
||
| 3207 | * @param[out] pDst points to the block of output data |
||
| 3208 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3209 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3210 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 3211 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
| 3212 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3213 | */ |
||
| 3214 | arm_status arm_conv_partial_opt_q7( |
||
| 3215 | q7_t * pSrcA, |
||
| 3216 | uint32_t srcALen, |
||
| 3217 | q7_t * pSrcB, |
||
| 3218 | uint32_t srcBLen, |
||
| 3219 | q7_t * pDst, |
||
| 3220 | uint32_t firstIndex, |
||
| 3221 | uint32_t numPoints, |
||
| 3222 | q15_t * pScratch1, |
||
| 3223 | q15_t * pScratch2); |
||
| 3224 | |||
| 3225 | |||
| 3226 | /** |
||
| 3227 | * @brief Partial convolution of Q7 sequences. |
||
| 3228 | * @param[in] pSrcA points to the first input sequence. |
||
| 3229 | * @param[in] srcALen length of the first input sequence. |
||
| 3230 | * @param[in] pSrcB points to the second input sequence. |
||
| 3231 | * @param[in] srcBLen length of the second input sequence. |
||
| 3232 | * @param[out] pDst points to the block of output data |
||
| 3233 | * @param[in] firstIndex is the first output sample to start with. |
||
| 3234 | * @param[in] numPoints is the number of output points to be computed. |
||
| 3235 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
| 3236 | */ |
||
| 3237 | arm_status arm_conv_partial_q7( |
||
| 3238 | q7_t * pSrcA, |
||
| 3239 | uint32_t srcALen, |
||
| 3240 | q7_t * pSrcB, |
||
| 3241 | uint32_t srcBLen, |
||
| 3242 | q7_t * pDst, |
||
| 3243 | uint32_t firstIndex, |
||
| 3244 | uint32_t numPoints); |
||
| 3245 | |||
| 3246 | |||
| 3247 | /** |
||
| 3248 | * @brief Instance structure for the Q15 FIR decimator. |
||
| 3249 | */ |
||
| 3250 | typedef struct |
||
| 3251 | { |
||
| 3252 | uint8_t M; /**< decimation factor. */ |
||
| 3253 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 3254 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 3255 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 3256 | } arm_fir_decimate_instance_q15; |
||
| 3257 | |||
| 3258 | /** |
||
| 3259 | * @brief Instance structure for the Q31 FIR decimator. |
||
| 3260 | */ |
||
| 3261 | typedef struct |
||
| 3262 | { |
||
| 3263 | uint8_t M; /**< decimation factor. */ |
||
| 3264 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 3265 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 3266 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 3267 | } arm_fir_decimate_instance_q31; |
||
| 3268 | |||
| 3269 | /** |
||
| 3270 | * @brief Instance structure for the floating-point FIR decimator. |
||
| 3271 | */ |
||
| 3272 | typedef struct |
||
| 3273 | { |
||
| 3274 | uint8_t M; /**< decimation factor. */ |
||
| 3275 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 3276 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 3277 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 3278 | } arm_fir_decimate_instance_f32; |
||
| 3279 | |||
| 3280 | |||
| 3281 | /** |
||
| 3282 | * @brief Processing function for the floating-point FIR decimator. |
||
| 3283 | * @param[in] S points to an instance of the floating-point FIR decimator structure. |
||
| 3284 | * @param[in] pSrc points to the block of input data. |
||
| 3285 | * @param[out] pDst points to the block of output data |
||
| 3286 | * @param[in] blockSize number of input samples to process per call. |
||
| 3287 | */ |
||
| 3288 | void arm_fir_decimate_f32( |
||
| 3289 | const arm_fir_decimate_instance_f32 * S, |
||
| 3290 | float32_t * pSrc, |
||
| 3291 | float32_t * pDst, |
||
| 3292 | uint32_t blockSize); |
||
| 3293 | |||
| 3294 | |||
| 3295 | /** |
||
| 3296 | * @brief Initialization function for the floating-point FIR decimator. |
||
| 3297 | * @param[in,out] S points to an instance of the floating-point FIR decimator structure. |
||
| 3298 | * @param[in] numTaps number of coefficients in the filter. |
||
| 3299 | * @param[in] M decimation factor. |
||
| 3300 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 3301 | * @param[in] pState points to the state buffer. |
||
| 3302 | * @param[in] blockSize number of input samples to process per call. |
||
| 3303 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
| 3304 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
| 3305 | */ |
||
| 3306 | arm_status arm_fir_decimate_init_f32( |
||
| 3307 | arm_fir_decimate_instance_f32 * S, |
||
| 3308 | uint16_t numTaps, |
||
| 3309 | uint8_t M, |
||
| 3310 | float32_t * pCoeffs, |
||
| 3311 | float32_t * pState, |
||
| 3312 | uint32_t blockSize); |
||
| 3313 | |||
| 3314 | |||
| 3315 | /** |
||
| 3316 | * @brief Processing function for the Q15 FIR decimator. |
||
| 3317 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
||
| 3318 | * @param[in] pSrc points to the block of input data. |
||
| 3319 | * @param[out] pDst points to the block of output data |
||
| 3320 | * @param[in] blockSize number of input samples to process per call. |
||
| 3321 | */ |
||
| 3322 | void arm_fir_decimate_q15( |
||
| 3323 | const arm_fir_decimate_instance_q15 * S, |
||
| 3324 | q15_t * pSrc, |
||
| 3325 | q15_t * pDst, |
||
| 3326 | uint32_t blockSize); |
||
| 3327 | |||
| 3328 | |||
| 3329 | /** |
||
| 3330 | * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
| 3331 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
||
| 3332 | * @param[in] pSrc points to the block of input data. |
||
| 3333 | * @param[out] pDst points to the block of output data |
||
| 3334 | * @param[in] blockSize number of input samples to process per call. |
||
| 3335 | */ |
||
| 3336 | void arm_fir_decimate_fast_q15( |
||
| 3337 | const arm_fir_decimate_instance_q15 * S, |
||
| 3338 | q15_t * pSrc, |
||
| 3339 | q15_t * pDst, |
||
| 3340 | uint32_t blockSize); |
||
| 3341 | |||
| 3342 | |||
| 3343 | /** |
||
| 3344 | * @brief Initialization function for the Q15 FIR decimator. |
||
| 3345 | * @param[in,out] S points to an instance of the Q15 FIR decimator structure. |
||
| 3346 | * @param[in] numTaps number of coefficients in the filter. |
||
| 3347 | * @param[in] M decimation factor. |
||
| 3348 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 3349 | * @param[in] pState points to the state buffer. |
||
| 3350 | * @param[in] blockSize number of input samples to process per call. |
||
| 3351 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
| 3352 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
| 3353 | */ |
||
| 3354 | arm_status arm_fir_decimate_init_q15( |
||
| 3355 | arm_fir_decimate_instance_q15 * S, |
||
| 3356 | uint16_t numTaps, |
||
| 3357 | uint8_t M, |
||
| 3358 | q15_t * pCoeffs, |
||
| 3359 | q15_t * pState, |
||
| 3360 | uint32_t blockSize); |
||
| 3361 | |||
| 3362 | |||
| 3363 | /** |
||
| 3364 | * @brief Processing function for the Q31 FIR decimator. |
||
| 3365 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
||
| 3366 | * @param[in] pSrc points to the block of input data. |
||
| 3367 | * @param[out] pDst points to the block of output data |
||
| 3368 | * @param[in] blockSize number of input samples to process per call. |
||
| 3369 | */ |
||
| 3370 | void arm_fir_decimate_q31( |
||
| 3371 | const arm_fir_decimate_instance_q31 * S, |
||
| 3372 | q31_t * pSrc, |
||
| 3373 | q31_t * pDst, |
||
| 3374 | uint32_t blockSize); |
||
| 3375 | |||
| 3376 | /** |
||
| 3377 | * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
| 3378 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
||
| 3379 | * @param[in] pSrc points to the block of input data. |
||
| 3380 | * @param[out] pDst points to the block of output data |
||
| 3381 | * @param[in] blockSize number of input samples to process per call. |
||
| 3382 | */ |
||
| 3383 | void arm_fir_decimate_fast_q31( |
||
| 3384 | arm_fir_decimate_instance_q31 * S, |
||
| 3385 | q31_t * pSrc, |
||
| 3386 | q31_t * pDst, |
||
| 3387 | uint32_t blockSize); |
||
| 3388 | |||
| 3389 | |||
| 3390 | /** |
||
| 3391 | * @brief Initialization function for the Q31 FIR decimator. |
||
| 3392 | * @param[in,out] S points to an instance of the Q31 FIR decimator structure. |
||
| 3393 | * @param[in] numTaps number of coefficients in the filter. |
||
| 3394 | * @param[in] M decimation factor. |
||
| 3395 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 3396 | * @param[in] pState points to the state buffer. |
||
| 3397 | * @param[in] blockSize number of input samples to process per call. |
||
| 3398 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
| 3399 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
| 3400 | */ |
||
| 3401 | arm_status arm_fir_decimate_init_q31( |
||
| 3402 | arm_fir_decimate_instance_q31 * S, |
||
| 3403 | uint16_t numTaps, |
||
| 3404 | uint8_t M, |
||
| 3405 | q31_t * pCoeffs, |
||
| 3406 | q31_t * pState, |
||
| 3407 | uint32_t blockSize); |
||
| 3408 | |||
| 3409 | |||
| 3410 | /** |
||
| 3411 | * @brief Instance structure for the Q15 FIR interpolator. |
||
| 3412 | */ |
||
| 3413 | typedef struct |
||
| 3414 | { |
||
| 3415 | uint8_t L; /**< upsample factor. */ |
||
| 3416 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
| 3417 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
| 3418 | q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
| 3419 | } arm_fir_interpolate_instance_q15; |
||
| 3420 | |||
| 3421 | /** |
||
| 3422 | * @brief Instance structure for the Q31 FIR interpolator. |
||
| 3423 | */ |
||
| 3424 | typedef struct |
||
| 3425 | { |
||
| 3426 | uint8_t L; /**< upsample factor. */ |
||
| 3427 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
| 3428 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
| 3429 | q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
| 3430 | } arm_fir_interpolate_instance_q31; |
||
| 3431 | |||
| 3432 | /** |
||
| 3433 | * @brief Instance structure for the floating-point FIR interpolator. |
||
| 3434 | */ |
||
| 3435 | typedef struct |
||
| 3436 | { |
||
| 3437 | uint8_t L; /**< upsample factor. */ |
||
| 3438 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
| 3439 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
| 3440 | float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ |
||
| 3441 | } arm_fir_interpolate_instance_f32; |
||
| 3442 | |||
| 3443 | |||
| 3444 | /** |
||
| 3445 | * @brief Processing function for the Q15 FIR interpolator. |
||
| 3446 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
||
| 3447 | * @param[in] pSrc points to the block of input data. |
||
| 3448 | * @param[out] pDst points to the block of output data. |
||
| 3449 | * @param[in] blockSize number of input samples to process per call. |
||
| 3450 | */ |
||
| 3451 | void arm_fir_interpolate_q15( |
||
| 3452 | const arm_fir_interpolate_instance_q15 * S, |
||
| 3453 | q15_t * pSrc, |
||
| 3454 | q15_t * pDst, |
||
| 3455 | uint32_t blockSize); |
||
| 3456 | |||
| 3457 | |||
| 3458 | /** |
||
| 3459 | * @brief Initialization function for the Q15 FIR interpolator. |
||
| 3460 | * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. |
||
| 3461 | * @param[in] L upsample factor. |
||
| 3462 | * @param[in] numTaps number of filter coefficients in the filter. |
||
| 3463 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
| 3464 | * @param[in] pState points to the state buffer. |
||
| 3465 | * @param[in] blockSize number of input samples to process per call. |
||
| 3466 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
| 3467 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
| 3468 | */ |
||
| 3469 | arm_status arm_fir_interpolate_init_q15( |
||
| 3470 | arm_fir_interpolate_instance_q15 * S, |
||
| 3471 | uint8_t L, |
||
| 3472 | uint16_t numTaps, |
||
| 3473 | q15_t * pCoeffs, |
||
| 3474 | q15_t * pState, |
||
| 3475 | uint32_t blockSize); |
||
| 3476 | |||
| 3477 | |||
| 3478 | /** |
||
| 3479 | * @brief Processing function for the Q31 FIR interpolator. |
||
| 3480 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
||
| 3481 | * @param[in] pSrc points to the block of input data. |
||
| 3482 | * @param[out] pDst points to the block of output data. |
||
| 3483 | * @param[in] blockSize number of input samples to process per call. |
||
| 3484 | */ |
||
| 3485 | void arm_fir_interpolate_q31( |
||
| 3486 | const arm_fir_interpolate_instance_q31 * S, |
||
| 3487 | q31_t * pSrc, |
||
| 3488 | q31_t * pDst, |
||
| 3489 | uint32_t blockSize); |
||
| 3490 | |||
| 3491 | |||
| 3492 | /** |
||
| 3493 | * @brief Initialization function for the Q31 FIR interpolator. |
||
| 3494 | * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. |
||
| 3495 | * @param[in] L upsample factor. |
||
| 3496 | * @param[in] numTaps number of filter coefficients in the filter. |
||
| 3497 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
| 3498 | * @param[in] pState points to the state buffer. |
||
| 3499 | * @param[in] blockSize number of input samples to process per call. |
||
| 3500 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
| 3501 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
| 3502 | */ |
||
| 3503 | arm_status arm_fir_interpolate_init_q31( |
||
| 3504 | arm_fir_interpolate_instance_q31 * S, |
||
| 3505 | uint8_t L, |
||
| 3506 | uint16_t numTaps, |
||
| 3507 | q31_t * pCoeffs, |
||
| 3508 | q31_t * pState, |
||
| 3509 | uint32_t blockSize); |
||
| 3510 | |||
| 3511 | |||
| 3512 | /** |
||
| 3513 | * @brief Processing function for the floating-point FIR interpolator. |
||
| 3514 | * @param[in] S points to an instance of the floating-point FIR interpolator structure. |
||
| 3515 | * @param[in] pSrc points to the block of input data. |
||
| 3516 | * @param[out] pDst points to the block of output data. |
||
| 3517 | * @param[in] blockSize number of input samples to process per call. |
||
| 3518 | */ |
||
| 3519 | void arm_fir_interpolate_f32( |
||
| 3520 | const arm_fir_interpolate_instance_f32 * S, |
||
| 3521 | float32_t * pSrc, |
||
| 3522 | float32_t * pDst, |
||
| 3523 | uint32_t blockSize); |
||
| 3524 | |||
| 3525 | |||
| 3526 | /** |
||
| 3527 | * @brief Initialization function for the floating-point FIR interpolator. |
||
| 3528 | * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. |
||
| 3529 | * @param[in] L upsample factor. |
||
| 3530 | * @param[in] numTaps number of filter coefficients in the filter. |
||
| 3531 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
| 3532 | * @param[in] pState points to the state buffer. |
||
| 3533 | * @param[in] blockSize number of input samples to process per call. |
||
| 3534 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
| 3535 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
| 3536 | */ |
||
| 3537 | arm_status arm_fir_interpolate_init_f32( |
||
| 3538 | arm_fir_interpolate_instance_f32 * S, |
||
| 3539 | uint8_t L, |
||
| 3540 | uint16_t numTaps, |
||
| 3541 | float32_t * pCoeffs, |
||
| 3542 | float32_t * pState, |
||
| 3543 | uint32_t blockSize); |
||
| 3544 | |||
| 3545 | |||
| 3546 | /** |
||
| 3547 | * @brief Instance structure for the high precision Q31 Biquad cascade filter. |
||
| 3548 | */ |
||
| 3549 | typedef struct |
||
| 3550 | { |
||
| 3551 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
| 3552 | q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
| 3553 | q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
| 3554 | uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ |
||
| 3555 | } arm_biquad_cas_df1_32x64_ins_q31; |
||
| 3556 | |||
| 3557 | |||
| 3558 | /** |
||
| 3559 | * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
||
| 3560 | * @param[in] pSrc points to the block of input data. |
||
| 3561 | * @param[out] pDst points to the block of output data |
||
| 3562 | * @param[in] blockSize number of samples to process. |
||
| 3563 | */ |
||
| 3564 | void arm_biquad_cas_df1_32x64_q31( |
||
| 3565 | const arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
| 3566 | q31_t * pSrc, |
||
| 3567 | q31_t * pDst, |
||
| 3568 | uint32_t blockSize); |
||
| 3569 | |||
| 3570 | |||
| 3571 | /** |
||
| 3572 | * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
||
| 3573 | * @param[in] numStages number of 2nd order stages in the filter. |
||
| 3574 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 3575 | * @param[in] pState points to the state buffer. |
||
| 3576 | * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format |
||
| 3577 | */ |
||
| 3578 | void arm_biquad_cas_df1_32x64_init_q31( |
||
| 3579 | arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
| 3580 | uint8_t numStages, |
||
| 3581 | q31_t * pCoeffs, |
||
| 3582 | q63_t * pState, |
||
| 3583 | uint8_t postShift); |
||
| 3584 | |||
| 3585 | |||
| 3586 | /** |
||
| 3587 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3588 | */ |
||
| 3589 | typedef struct |
||
| 3590 | { |
||
| 3591 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
| 3592 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
| 3593 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
| 3594 | } arm_biquad_cascade_df2T_instance_f32; |
||
| 3595 | |||
| 3596 | /** |
||
| 3597 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3598 | */ |
||
| 3599 | typedef struct |
||
| 3600 | { |
||
| 3601 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
| 3602 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
| 3603 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
| 3604 | } arm_biquad_cascade_stereo_df2T_instance_f32; |
||
| 3605 | |||
| 3606 | /** |
||
| 3607 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3608 | */ |
||
| 3609 | typedef struct |
||
| 3610 | { |
||
| 3611 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
| 3612 | float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
| 3613 | float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
| 3614 | } arm_biquad_cascade_df2T_instance_f64; |
||
| 3615 | |||
| 3616 | |||
| 3617 | /** |
||
| 3618 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3619 | * @param[in] S points to an instance of the filter data structure. |
||
| 3620 | * @param[in] pSrc points to the block of input data. |
||
| 3621 | * @param[out] pDst points to the block of output data |
||
| 3622 | * @param[in] blockSize number of samples to process. |
||
| 3623 | */ |
||
| 3624 | void arm_biquad_cascade_df2T_f32( |
||
| 3625 | const arm_biquad_cascade_df2T_instance_f32 * S, |
||
| 3626 | float32_t * pSrc, |
||
| 3627 | float32_t * pDst, |
||
| 3628 | uint32_t blockSize); |
||
| 3629 | |||
| 3630 | |||
| 3631 | /** |
||
| 3632 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels |
||
| 3633 | * @param[in] S points to an instance of the filter data structure. |
||
| 3634 | * @param[in] pSrc points to the block of input data. |
||
| 3635 | * @param[out] pDst points to the block of output data |
||
| 3636 | * @param[in] blockSize number of samples to process. |
||
| 3637 | */ |
||
| 3638 | void arm_biquad_cascade_stereo_df2T_f32( |
||
| 3639 | const arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
| 3640 | float32_t * pSrc, |
||
| 3641 | float32_t * pDst, |
||
| 3642 | uint32_t blockSize); |
||
| 3643 | |||
| 3644 | |||
| 3645 | /** |
||
| 3646 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3647 | * @param[in] S points to an instance of the filter data structure. |
||
| 3648 | * @param[in] pSrc points to the block of input data. |
||
| 3649 | * @param[out] pDst points to the block of output data |
||
| 3650 | * @param[in] blockSize number of samples to process. |
||
| 3651 | */ |
||
| 3652 | void arm_biquad_cascade_df2T_f64( |
||
| 3653 | const arm_biquad_cascade_df2T_instance_f64 * S, |
||
| 3654 | float64_t * pSrc, |
||
| 3655 | float64_t * pDst, |
||
| 3656 | uint32_t blockSize); |
||
| 3657 | |||
| 3658 | |||
| 3659 | /** |
||
| 3660 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3661 | * @param[in,out] S points to an instance of the filter data structure. |
||
| 3662 | * @param[in] numStages number of 2nd order stages in the filter. |
||
| 3663 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 3664 | * @param[in] pState points to the state buffer. |
||
| 3665 | */ |
||
| 3666 | void arm_biquad_cascade_df2T_init_f32( |
||
| 3667 | arm_biquad_cascade_df2T_instance_f32 * S, |
||
| 3668 | uint8_t numStages, |
||
| 3669 | float32_t * pCoeffs, |
||
| 3670 | float32_t * pState); |
||
| 3671 | |||
| 3672 | |||
| 3673 | /** |
||
| 3674 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3675 | * @param[in,out] S points to an instance of the filter data structure. |
||
| 3676 | * @param[in] numStages number of 2nd order stages in the filter. |
||
| 3677 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 3678 | * @param[in] pState points to the state buffer. |
||
| 3679 | */ |
||
| 3680 | void arm_biquad_cascade_stereo_df2T_init_f32( |
||
| 3681 | arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
| 3682 | uint8_t numStages, |
||
| 3683 | float32_t * pCoeffs, |
||
| 3684 | float32_t * pState); |
||
| 3685 | |||
| 3686 | |||
| 3687 | /** |
||
| 3688 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
| 3689 | * @param[in,out] S points to an instance of the filter data structure. |
||
| 3690 | * @param[in] numStages number of 2nd order stages in the filter. |
||
| 3691 | * @param[in] pCoeffs points to the filter coefficients. |
||
| 3692 | * @param[in] pState points to the state buffer. |
||
| 3693 | */ |
||
| 3694 | void arm_biquad_cascade_df2T_init_f64( |
||
| 3695 | arm_biquad_cascade_df2T_instance_f64 * S, |
||
| 3696 | uint8_t numStages, |
||
| 3697 | float64_t * pCoeffs, |
||
| 3698 | float64_t * pState); |
||
| 3699 | |||
| 3700 | |||
| 3701 | /** |
||
| 3702 | * @brief Instance structure for the Q15 FIR lattice filter. |
||
| 3703 | */ |
||
| 3704 | typedef struct |
||
| 3705 | { |
||
| 3706 | uint16_t numStages; /**< number of filter stages. */ |
||
| 3707 | q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
| 3708 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
| 3709 | } arm_fir_lattice_instance_q15; |
||
| 3710 | |||
| 3711 | /** |
||
| 3712 | * @brief Instance structure for the Q31 FIR lattice filter. |
||
| 3713 | */ |
||
| 3714 | typedef struct |
||
| 3715 | { |
||
| 3716 | uint16_t numStages; /**< number of filter stages. */ |
||
| 3717 | q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
| 3718 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
| 3719 | } arm_fir_lattice_instance_q31; |
||
| 3720 | |||
| 3721 | /** |
||
| 3722 | * @brief Instance structure for the floating-point FIR lattice filter. |
||
| 3723 | */ |
||
| 3724 | typedef struct |
||
| 3725 | { |
||
| 3726 | uint16_t numStages; /**< number of filter stages. */ |
||
| 3727 | float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
| 3728 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
| 3729 | } arm_fir_lattice_instance_f32; |
||
| 3730 | |||
| 3731 | |||
| 3732 | /** |
||
| 3733 | * @brief Initialization function for the Q15 FIR lattice filter. |
||
| 3734 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
||
| 3735 | * @param[in] numStages number of filter stages. |
||
| 3736 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
| 3737 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
| 3738 | */ |
||
| 3739 | void arm_fir_lattice_init_q15( |
||
| 3740 | arm_fir_lattice_instance_q15 * S, |
||
| 3741 | uint16_t numStages, |
||
| 3742 | q15_t * pCoeffs, |
||
| 3743 | q15_t * pState); |
||
| 3744 | |||
| 3745 | |||
| 3746 | /** |
||
| 3747 | * @brief Processing function for the Q15 FIR lattice filter. |
||
| 3748 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
||
| 3749 | * @param[in] pSrc points to the block of input data. |
||
| 3750 | * @param[out] pDst points to the block of output data. |
||
| 3751 | * @param[in] blockSize number of samples to process. |
||
| 3752 | */ |
||
| 3753 | void arm_fir_lattice_q15( |
||
| 3754 | const arm_fir_lattice_instance_q15 * S, |
||
| 3755 | q15_t * pSrc, |
||
| 3756 | q15_t * pDst, |
||
| 3757 | uint32_t blockSize); |
||
| 3758 | |||
| 3759 | |||
| 3760 | /** |
||
| 3761 | * @brief Initialization function for the Q31 FIR lattice filter. |
||
| 3762 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
||
| 3763 | * @param[in] numStages number of filter stages. |
||
| 3764 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
| 3765 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
| 3766 | */ |
||
| 3767 | void arm_fir_lattice_init_q31( |
||
| 3768 | arm_fir_lattice_instance_q31 * S, |
||
| 3769 | uint16_t numStages, |
||
| 3770 | q31_t * pCoeffs, |
||
| 3771 | q31_t * pState); |
||
| 3772 | |||
| 3773 | |||
| 3774 | /** |
||
| 3775 | * @brief Processing function for the Q31 FIR lattice filter. |
||
| 3776 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
||
| 3777 | * @param[in] pSrc points to the block of input data. |
||
| 3778 | * @param[out] pDst points to the block of output data |
||
| 3779 | * @param[in] blockSize number of samples to process. |
||
| 3780 | */ |
||
| 3781 | void arm_fir_lattice_q31( |
||
| 3782 | const arm_fir_lattice_instance_q31 * S, |
||
| 3783 | q31_t * pSrc, |
||
| 3784 | q31_t * pDst, |
||
| 3785 | uint32_t blockSize); |
||
| 3786 | |||
| 3787 | |||
| 3788 | /** |
||
| 3789 | * @brief Initialization function for the floating-point FIR lattice filter. |
||
| 3790 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
||
| 3791 | * @param[in] numStages number of filter stages. |
||
| 3792 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
| 3793 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
| 3794 | */ |
||
| 3795 | void arm_fir_lattice_init_f32( |
||
| 3796 | arm_fir_lattice_instance_f32 * S, |
||
| 3797 | uint16_t numStages, |
||
| 3798 | float32_t * pCoeffs, |
||
| 3799 | float32_t * pState); |
||
| 3800 | |||
| 3801 | |||
| 3802 | /** |
||
| 3803 | * @brief Processing function for the floating-point FIR lattice filter. |
||
| 3804 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
||
| 3805 | * @param[in] pSrc points to the block of input data. |
||
| 3806 | * @param[out] pDst points to the block of output data |
||
| 3807 | * @param[in] blockSize number of samples to process. |
||
| 3808 | */ |
||
| 3809 | void arm_fir_lattice_f32( |
||
| 3810 | const arm_fir_lattice_instance_f32 * S, |
||
| 3811 | float32_t * pSrc, |
||
| 3812 | float32_t * pDst, |
||
| 3813 | uint32_t blockSize); |
||
| 3814 | |||
| 3815 | |||
| 3816 | /** |
||
| 3817 | * @brief Instance structure for the Q15 IIR lattice filter. |
||
| 3818 | */ |
||
| 3819 | typedef struct |
||
| 3820 | { |
||
| 3821 | uint16_t numStages; /**< number of stages in the filter. */ |
||
| 3822 | q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
| 3823 | q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
| 3824 | q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
| 3825 | } arm_iir_lattice_instance_q15; |
||
| 3826 | |||
| 3827 | /** |
||
| 3828 | * @brief Instance structure for the Q31 IIR lattice filter. |
||
| 3829 | */ |
||
| 3830 | typedef struct |
||
| 3831 | { |
||
| 3832 | uint16_t numStages; /**< number of stages in the filter. */ |
||
| 3833 | q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
| 3834 | q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
| 3835 | q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
| 3836 | } arm_iir_lattice_instance_q31; |
||
| 3837 | |||
| 3838 | /** |
||
| 3839 | * @brief Instance structure for the floating-point IIR lattice filter. |
||
| 3840 | */ |
||
| 3841 | typedef struct |
||
| 3842 | { |
||
| 3843 | uint16_t numStages; /**< number of stages in the filter. */ |
||
| 3844 | float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
| 3845 | float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
| 3846 | float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
| 3847 | } arm_iir_lattice_instance_f32; |
||
| 3848 | |||
| 3849 | |||
| 3850 | /** |
||
| 3851 | * @brief Processing function for the floating-point IIR lattice filter. |
||
| 3852 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
||
| 3853 | * @param[in] pSrc points to the block of input data. |
||
| 3854 | * @param[out] pDst points to the block of output data. |
||
| 3855 | * @param[in] blockSize number of samples to process. |
||
| 3856 | */ |
||
| 3857 | void arm_iir_lattice_f32( |
||
| 3858 | const arm_iir_lattice_instance_f32 * S, |
||
| 3859 | float32_t * pSrc, |
||
| 3860 | float32_t * pDst, |
||
| 3861 | uint32_t blockSize); |
||
| 3862 | |||
| 3863 | |||
| 3864 | /** |
||
| 3865 | * @brief Initialization function for the floating-point IIR lattice filter. |
||
| 3866 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
||
| 3867 | * @param[in] numStages number of stages in the filter. |
||
| 3868 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
| 3869 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
| 3870 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. |
||
| 3871 | * @param[in] blockSize number of samples to process. |
||
| 3872 | */ |
||
| 3873 | void arm_iir_lattice_init_f32( |
||
| 3874 | arm_iir_lattice_instance_f32 * S, |
||
| 3875 | uint16_t numStages, |
||
| 3876 | float32_t * pkCoeffs, |
||
| 3877 | float32_t * pvCoeffs, |
||
| 3878 | float32_t * pState, |
||
| 3879 | uint32_t blockSize); |
||
| 3880 | |||
| 3881 | |||
| 3882 | /** |
||
| 3883 | * @brief Processing function for the Q31 IIR lattice filter. |
||
| 3884 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
||
| 3885 | * @param[in] pSrc points to the block of input data. |
||
| 3886 | * @param[out] pDst points to the block of output data. |
||
| 3887 | * @param[in] blockSize number of samples to process. |
||
| 3888 | */ |
||
| 3889 | void arm_iir_lattice_q31( |
||
| 3890 | const arm_iir_lattice_instance_q31 * S, |
||
| 3891 | q31_t * pSrc, |
||
| 3892 | q31_t * pDst, |
||
| 3893 | uint32_t blockSize); |
||
| 3894 | |||
| 3895 | |||
| 3896 | /** |
||
| 3897 | * @brief Initialization function for the Q31 IIR lattice filter. |
||
| 3898 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
||
| 3899 | * @param[in] numStages number of stages in the filter. |
||
| 3900 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
| 3901 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
| 3902 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. |
||
| 3903 | * @param[in] blockSize number of samples to process. |
||
| 3904 | */ |
||
| 3905 | void arm_iir_lattice_init_q31( |
||
| 3906 | arm_iir_lattice_instance_q31 * S, |
||
| 3907 | uint16_t numStages, |
||
| 3908 | q31_t * pkCoeffs, |
||
| 3909 | q31_t * pvCoeffs, |
||
| 3910 | q31_t * pState, |
||
| 3911 | uint32_t blockSize); |
||
| 3912 | |||
| 3913 | |||
| 3914 | /** |
||
| 3915 | * @brief Processing function for the Q15 IIR lattice filter. |
||
| 3916 | * @param[in] S points to an instance of the Q15 IIR lattice structure. |
||
| 3917 | * @param[in] pSrc points to the block of input data. |
||
| 3918 | * @param[out] pDst points to the block of output data. |
||
| 3919 | * @param[in] blockSize number of samples to process. |
||
| 3920 | */ |
||
| 3921 | void arm_iir_lattice_q15( |
||
| 3922 | const arm_iir_lattice_instance_q15 * S, |
||
| 3923 | q15_t * pSrc, |
||
| 3924 | q15_t * pDst, |
||
| 3925 | uint32_t blockSize); |
||
| 3926 | |||
| 3927 | |||
| 3928 | /** |
||
| 3929 | * @brief Initialization function for the Q15 IIR lattice filter. |
||
| 3930 | * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. |
||
| 3931 | * @param[in] numStages number of stages in the filter. |
||
| 3932 | * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. |
||
| 3933 | * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. |
||
| 3934 | * @param[in] pState points to state buffer. The array is of length numStages+blockSize. |
||
| 3935 | * @param[in] blockSize number of samples to process per call. |
||
| 3936 | */ |
||
| 3937 | void arm_iir_lattice_init_q15( |
||
| 3938 | arm_iir_lattice_instance_q15 * S, |
||
| 3939 | uint16_t numStages, |
||
| 3940 | q15_t * pkCoeffs, |
||
| 3941 | q15_t * pvCoeffs, |
||
| 3942 | q15_t * pState, |
||
| 3943 | uint32_t blockSize); |
||
| 3944 | |||
| 3945 | |||
| 3946 | /** |
||
| 3947 | * @brief Instance structure for the floating-point LMS filter. |
||
| 3948 | */ |
||
| 3949 | typedef struct |
||
| 3950 | { |
||
| 3951 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 3952 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 3953 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 3954 | float32_t mu; /**< step size that controls filter coefficient updates. */ |
||
| 3955 | } arm_lms_instance_f32; |
||
| 3956 | |||
| 3957 | |||
| 3958 | /** |
||
| 3959 | * @brief Processing function for floating-point LMS filter. |
||
| 3960 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
||
| 3961 | * @param[in] pSrc points to the block of input data. |
||
| 3962 | * @param[in] pRef points to the block of reference data. |
||
| 3963 | * @param[out] pOut points to the block of output data. |
||
| 3964 | * @param[out] pErr points to the block of error data. |
||
| 3965 | * @param[in] blockSize number of samples to process. |
||
| 3966 | */ |
||
| 3967 | void arm_lms_f32( |
||
| 3968 | const arm_lms_instance_f32 * S, |
||
| 3969 | float32_t * pSrc, |
||
| 3970 | float32_t * pRef, |
||
| 3971 | float32_t * pOut, |
||
| 3972 | float32_t * pErr, |
||
| 3973 | uint32_t blockSize); |
||
| 3974 | |||
| 3975 | |||
| 3976 | /** |
||
| 3977 | * @brief Initialization function for floating-point LMS filter. |
||
| 3978 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
||
| 3979 | * @param[in] numTaps number of filter coefficients. |
||
| 3980 | * @param[in] pCoeffs points to the coefficient buffer. |
||
| 3981 | * @param[in] pState points to state buffer. |
||
| 3982 | * @param[in] mu step size that controls filter coefficient updates. |
||
| 3983 | * @param[in] blockSize number of samples to process. |
||
| 3984 | */ |
||
| 3985 | void arm_lms_init_f32( |
||
| 3986 | arm_lms_instance_f32 * S, |
||
| 3987 | uint16_t numTaps, |
||
| 3988 | float32_t * pCoeffs, |
||
| 3989 | float32_t * pState, |
||
| 3990 | float32_t mu, |
||
| 3991 | uint32_t blockSize); |
||
| 3992 | |||
| 3993 | |||
| 3994 | /** |
||
| 3995 | * @brief Instance structure for the Q15 LMS filter. |
||
| 3996 | */ |
||
| 3997 | typedef struct |
||
| 3998 | { |
||
| 3999 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4000 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 4001 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 4002 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
||
| 4003 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
| 4004 | } arm_lms_instance_q15; |
||
| 4005 | |||
| 4006 | |||
| 4007 | /** |
||
| 4008 | * @brief Initialization function for the Q15 LMS filter. |
||
| 4009 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
||
| 4010 | * @param[in] numTaps number of filter coefficients. |
||
| 4011 | * @param[in] pCoeffs points to the coefficient buffer. |
||
| 4012 | * @param[in] pState points to the state buffer. |
||
| 4013 | * @param[in] mu step size that controls filter coefficient updates. |
||
| 4014 | * @param[in] blockSize number of samples to process. |
||
| 4015 | * @param[in] postShift bit shift applied to coefficients. |
||
| 4016 | */ |
||
| 4017 | void arm_lms_init_q15( |
||
| 4018 | arm_lms_instance_q15 * S, |
||
| 4019 | uint16_t numTaps, |
||
| 4020 | q15_t * pCoeffs, |
||
| 4021 | q15_t * pState, |
||
| 4022 | q15_t mu, |
||
| 4023 | uint32_t blockSize, |
||
| 4024 | uint32_t postShift); |
||
| 4025 | |||
| 4026 | |||
| 4027 | /** |
||
| 4028 | * @brief Processing function for Q15 LMS filter. |
||
| 4029 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
||
| 4030 | * @param[in] pSrc points to the block of input data. |
||
| 4031 | * @param[in] pRef points to the block of reference data. |
||
| 4032 | * @param[out] pOut points to the block of output data. |
||
| 4033 | * @param[out] pErr points to the block of error data. |
||
| 4034 | * @param[in] blockSize number of samples to process. |
||
| 4035 | */ |
||
| 4036 | void arm_lms_q15( |
||
| 4037 | const arm_lms_instance_q15 * S, |
||
| 4038 | q15_t * pSrc, |
||
| 4039 | q15_t * pRef, |
||
| 4040 | q15_t * pOut, |
||
| 4041 | q15_t * pErr, |
||
| 4042 | uint32_t blockSize); |
||
| 4043 | |||
| 4044 | |||
| 4045 | /** |
||
| 4046 | * @brief Instance structure for the Q31 LMS filter. |
||
| 4047 | */ |
||
| 4048 | typedef struct |
||
| 4049 | { |
||
| 4050 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4051 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 4052 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 4053 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
| 4054 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
| 4055 | } arm_lms_instance_q31; |
||
| 4056 | |||
| 4057 | |||
| 4058 | /** |
||
| 4059 | * @brief Processing function for Q31 LMS filter. |
||
| 4060 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
||
| 4061 | * @param[in] pSrc points to the block of input data. |
||
| 4062 | * @param[in] pRef points to the block of reference data. |
||
| 4063 | * @param[out] pOut points to the block of output data. |
||
| 4064 | * @param[out] pErr points to the block of error data. |
||
| 4065 | * @param[in] blockSize number of samples to process. |
||
| 4066 | */ |
||
| 4067 | void arm_lms_q31( |
||
| 4068 | const arm_lms_instance_q31 * S, |
||
| 4069 | q31_t * pSrc, |
||
| 4070 | q31_t * pRef, |
||
| 4071 | q31_t * pOut, |
||
| 4072 | q31_t * pErr, |
||
| 4073 | uint32_t blockSize); |
||
| 4074 | |||
| 4075 | |||
| 4076 | /** |
||
| 4077 | * @brief Initialization function for Q31 LMS filter. |
||
| 4078 | * @param[in] S points to an instance of the Q31 LMS filter structure. |
||
| 4079 | * @param[in] numTaps number of filter coefficients. |
||
| 4080 | * @param[in] pCoeffs points to coefficient buffer. |
||
| 4081 | * @param[in] pState points to state buffer. |
||
| 4082 | * @param[in] mu step size that controls filter coefficient updates. |
||
| 4083 | * @param[in] blockSize number of samples to process. |
||
| 4084 | * @param[in] postShift bit shift applied to coefficients. |
||
| 4085 | */ |
||
| 4086 | void arm_lms_init_q31( |
||
| 4087 | arm_lms_instance_q31 * S, |
||
| 4088 | uint16_t numTaps, |
||
| 4089 | q31_t * pCoeffs, |
||
| 4090 | q31_t * pState, |
||
| 4091 | q31_t mu, |
||
| 4092 | uint32_t blockSize, |
||
| 4093 | uint32_t postShift); |
||
| 4094 | |||
| 4095 | |||
| 4096 | /** |
||
| 4097 | * @brief Instance structure for the floating-point normalized LMS filter. |
||
| 4098 | */ |
||
| 4099 | typedef struct |
||
| 4100 | { |
||
| 4101 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4102 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 4103 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 4104 | float32_t mu; /**< step size that control filter coefficient updates. */ |
||
| 4105 | float32_t energy; /**< saves previous frame energy. */ |
||
| 4106 | float32_t x0; /**< saves previous input sample. */ |
||
| 4107 | } arm_lms_norm_instance_f32; |
||
| 4108 | |||
| 4109 | |||
| 4110 | /** |
||
| 4111 | * @brief Processing function for floating-point normalized LMS filter. |
||
| 4112 | * @param[in] S points to an instance of the floating-point normalized LMS filter structure. |
||
| 4113 | * @param[in] pSrc points to the block of input data. |
||
| 4114 | * @param[in] pRef points to the block of reference data. |
||
| 4115 | * @param[out] pOut points to the block of output data. |
||
| 4116 | * @param[out] pErr points to the block of error data. |
||
| 4117 | * @param[in] blockSize number of samples to process. |
||
| 4118 | */ |
||
| 4119 | void arm_lms_norm_f32( |
||
| 4120 | arm_lms_norm_instance_f32 * S, |
||
| 4121 | float32_t * pSrc, |
||
| 4122 | float32_t * pRef, |
||
| 4123 | float32_t * pOut, |
||
| 4124 | float32_t * pErr, |
||
| 4125 | uint32_t blockSize); |
||
| 4126 | |||
| 4127 | |||
| 4128 | /** |
||
| 4129 | * @brief Initialization function for floating-point normalized LMS filter. |
||
| 4130 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
||
| 4131 | * @param[in] numTaps number of filter coefficients. |
||
| 4132 | * @param[in] pCoeffs points to coefficient buffer. |
||
| 4133 | * @param[in] pState points to state buffer. |
||
| 4134 | * @param[in] mu step size that controls filter coefficient updates. |
||
| 4135 | * @param[in] blockSize number of samples to process. |
||
| 4136 | */ |
||
| 4137 | void arm_lms_norm_init_f32( |
||
| 4138 | arm_lms_norm_instance_f32 * S, |
||
| 4139 | uint16_t numTaps, |
||
| 4140 | float32_t * pCoeffs, |
||
| 4141 | float32_t * pState, |
||
| 4142 | float32_t mu, |
||
| 4143 | uint32_t blockSize); |
||
| 4144 | |||
| 4145 | |||
| 4146 | /** |
||
| 4147 | * @brief Instance structure for the Q31 normalized LMS filter. |
||
| 4148 | */ |
||
| 4149 | typedef struct |
||
| 4150 | { |
||
| 4151 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4152 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 4153 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 4154 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
| 4155 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
| 4156 | q31_t *recipTable; /**< points to the reciprocal initial value table. */ |
||
| 4157 | q31_t energy; /**< saves previous frame energy. */ |
||
| 4158 | q31_t x0; /**< saves previous input sample. */ |
||
| 4159 | } arm_lms_norm_instance_q31; |
||
| 4160 | |||
| 4161 | |||
| 4162 | /** |
||
| 4163 | * @brief Processing function for Q31 normalized LMS filter. |
||
| 4164 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
||
| 4165 | * @param[in] pSrc points to the block of input data. |
||
| 4166 | * @param[in] pRef points to the block of reference data. |
||
| 4167 | * @param[out] pOut points to the block of output data. |
||
| 4168 | * @param[out] pErr points to the block of error data. |
||
| 4169 | * @param[in] blockSize number of samples to process. |
||
| 4170 | */ |
||
| 4171 | void arm_lms_norm_q31( |
||
| 4172 | arm_lms_norm_instance_q31 * S, |
||
| 4173 | q31_t * pSrc, |
||
| 4174 | q31_t * pRef, |
||
| 4175 | q31_t * pOut, |
||
| 4176 | q31_t * pErr, |
||
| 4177 | uint32_t blockSize); |
||
| 4178 | |||
| 4179 | |||
| 4180 | /** |
||
| 4181 | * @brief Initialization function for Q31 normalized LMS filter. |
||
| 4182 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
||
| 4183 | * @param[in] numTaps number of filter coefficients. |
||
| 4184 | * @param[in] pCoeffs points to coefficient buffer. |
||
| 4185 | * @param[in] pState points to state buffer. |
||
| 4186 | * @param[in] mu step size that controls filter coefficient updates. |
||
| 4187 | * @param[in] blockSize number of samples to process. |
||
| 4188 | * @param[in] postShift bit shift applied to coefficients. |
||
| 4189 | */ |
||
| 4190 | void arm_lms_norm_init_q31( |
||
| 4191 | arm_lms_norm_instance_q31 * S, |
||
| 4192 | uint16_t numTaps, |
||
| 4193 | q31_t * pCoeffs, |
||
| 4194 | q31_t * pState, |
||
| 4195 | q31_t mu, |
||
| 4196 | uint32_t blockSize, |
||
| 4197 | uint8_t postShift); |
||
| 4198 | |||
| 4199 | |||
| 4200 | /** |
||
| 4201 | * @brief Instance structure for the Q15 normalized LMS filter. |
||
| 4202 | */ |
||
| 4203 | typedef struct |
||
| 4204 | { |
||
| 4205 | uint16_t numTaps; /**< Number of coefficients in the filter. */ |
||
| 4206 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
| 4207 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
| 4208 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
||
| 4209 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
| 4210 | q15_t *recipTable; /**< Points to the reciprocal initial value table. */ |
||
| 4211 | q15_t energy; /**< saves previous frame energy. */ |
||
| 4212 | q15_t x0; /**< saves previous input sample. */ |
||
| 4213 | } arm_lms_norm_instance_q15; |
||
| 4214 | |||
| 4215 | |||
| 4216 | /** |
||
| 4217 | * @brief Processing function for Q15 normalized LMS filter. |
||
| 4218 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
||
| 4219 | * @param[in] pSrc points to the block of input data. |
||
| 4220 | * @param[in] pRef points to the block of reference data. |
||
| 4221 | * @param[out] pOut points to the block of output data. |
||
| 4222 | * @param[out] pErr points to the block of error data. |
||
| 4223 | * @param[in] blockSize number of samples to process. |
||
| 4224 | */ |
||
| 4225 | void arm_lms_norm_q15( |
||
| 4226 | arm_lms_norm_instance_q15 * S, |
||
| 4227 | q15_t * pSrc, |
||
| 4228 | q15_t * pRef, |
||
| 4229 | q15_t * pOut, |
||
| 4230 | q15_t * pErr, |
||
| 4231 | uint32_t blockSize); |
||
| 4232 | |||
| 4233 | |||
| 4234 | /** |
||
| 4235 | * @brief Initialization function for Q15 normalized LMS filter. |
||
| 4236 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
||
| 4237 | * @param[in] numTaps number of filter coefficients. |
||
| 4238 | * @param[in] pCoeffs points to coefficient buffer. |
||
| 4239 | * @param[in] pState points to state buffer. |
||
| 4240 | * @param[in] mu step size that controls filter coefficient updates. |
||
| 4241 | * @param[in] blockSize number of samples to process. |
||
| 4242 | * @param[in] postShift bit shift applied to coefficients. |
||
| 4243 | */ |
||
| 4244 | void arm_lms_norm_init_q15( |
||
| 4245 | arm_lms_norm_instance_q15 * S, |
||
| 4246 | uint16_t numTaps, |
||
| 4247 | q15_t * pCoeffs, |
||
| 4248 | q15_t * pState, |
||
| 4249 | q15_t mu, |
||
| 4250 | uint32_t blockSize, |
||
| 4251 | uint8_t postShift); |
||
| 4252 | |||
| 4253 | |||
| 4254 | /** |
||
| 4255 | * @brief Correlation of floating-point sequences. |
||
| 4256 | * @param[in] pSrcA points to the first input sequence. |
||
| 4257 | * @param[in] srcALen length of the first input sequence. |
||
| 4258 | * @param[in] pSrcB points to the second input sequence. |
||
| 4259 | * @param[in] srcBLen length of the second input sequence. |
||
| 4260 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4261 | */ |
||
| 4262 | void arm_correlate_f32( |
||
| 4263 | float32_t * pSrcA, |
||
| 4264 | uint32_t srcALen, |
||
| 4265 | float32_t * pSrcB, |
||
| 4266 | uint32_t srcBLen, |
||
| 4267 | float32_t * pDst); |
||
| 4268 | |||
| 4269 | |||
| 4270 | /** |
||
| 4271 | * @brief Correlation of Q15 sequences |
||
| 4272 | * @param[in] pSrcA points to the first input sequence. |
||
| 4273 | * @param[in] srcALen length of the first input sequence. |
||
| 4274 | * @param[in] pSrcB points to the second input sequence. |
||
| 4275 | * @param[in] srcBLen length of the second input sequence. |
||
| 4276 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4277 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 4278 | */ |
||
| 4279 | void arm_correlate_opt_q15( |
||
| 4280 | q15_t * pSrcA, |
||
| 4281 | uint32_t srcALen, |
||
| 4282 | q15_t * pSrcB, |
||
| 4283 | uint32_t srcBLen, |
||
| 4284 | q15_t * pDst, |
||
| 4285 | q15_t * pScratch); |
||
| 4286 | |||
| 4287 | |||
| 4288 | /** |
||
| 4289 | * @brief Correlation of Q15 sequences. |
||
| 4290 | * @param[in] pSrcA points to the first input sequence. |
||
| 4291 | * @param[in] srcALen length of the first input sequence. |
||
| 4292 | * @param[in] pSrcB points to the second input sequence. |
||
| 4293 | * @param[in] srcBLen length of the second input sequence. |
||
| 4294 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4295 | */ |
||
| 4296 | |||
| 4297 | void arm_correlate_q15( |
||
| 4298 | q15_t * pSrcA, |
||
| 4299 | uint32_t srcALen, |
||
| 4300 | q15_t * pSrcB, |
||
| 4301 | uint32_t srcBLen, |
||
| 4302 | q15_t * pDst); |
||
| 4303 | |||
| 4304 | |||
| 4305 | /** |
||
| 4306 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
| 4307 | * @param[in] pSrcA points to the first input sequence. |
||
| 4308 | * @param[in] srcALen length of the first input sequence. |
||
| 4309 | * @param[in] pSrcB points to the second input sequence. |
||
| 4310 | * @param[in] srcBLen length of the second input sequence. |
||
| 4311 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4312 | */ |
||
| 4313 | |||
| 4314 | void arm_correlate_fast_q15( |
||
| 4315 | q15_t * pSrcA, |
||
| 4316 | uint32_t srcALen, |
||
| 4317 | q15_t * pSrcB, |
||
| 4318 | uint32_t srcBLen, |
||
| 4319 | q15_t * pDst); |
||
| 4320 | |||
| 4321 | |||
| 4322 | /** |
||
| 4323 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
| 4324 | * @param[in] pSrcA points to the first input sequence. |
||
| 4325 | * @param[in] srcALen length of the first input sequence. |
||
| 4326 | * @param[in] pSrcB points to the second input sequence. |
||
| 4327 | * @param[in] srcBLen length of the second input sequence. |
||
| 4328 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4329 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 4330 | */ |
||
| 4331 | void arm_correlate_fast_opt_q15( |
||
| 4332 | q15_t * pSrcA, |
||
| 4333 | uint32_t srcALen, |
||
| 4334 | q15_t * pSrcB, |
||
| 4335 | uint32_t srcBLen, |
||
| 4336 | q15_t * pDst, |
||
| 4337 | q15_t * pScratch); |
||
| 4338 | |||
| 4339 | |||
| 4340 | /** |
||
| 4341 | * @brief Correlation of Q31 sequences. |
||
| 4342 | * @param[in] pSrcA points to the first input sequence. |
||
| 4343 | * @param[in] srcALen length of the first input sequence. |
||
| 4344 | * @param[in] pSrcB points to the second input sequence. |
||
| 4345 | * @param[in] srcBLen length of the second input sequence. |
||
| 4346 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4347 | */ |
||
| 4348 | void arm_correlate_q31( |
||
| 4349 | q31_t * pSrcA, |
||
| 4350 | uint32_t srcALen, |
||
| 4351 | q31_t * pSrcB, |
||
| 4352 | uint32_t srcBLen, |
||
| 4353 | q31_t * pDst); |
||
| 4354 | |||
| 4355 | |||
| 4356 | /** |
||
| 4357 | * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
| 4358 | * @param[in] pSrcA points to the first input sequence. |
||
| 4359 | * @param[in] srcALen length of the first input sequence. |
||
| 4360 | * @param[in] pSrcB points to the second input sequence. |
||
| 4361 | * @param[in] srcBLen length of the second input sequence. |
||
| 4362 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4363 | */ |
||
| 4364 | void arm_correlate_fast_q31( |
||
| 4365 | q31_t * pSrcA, |
||
| 4366 | uint32_t srcALen, |
||
| 4367 | q31_t * pSrcB, |
||
| 4368 | uint32_t srcBLen, |
||
| 4369 | q31_t * pDst); |
||
| 4370 | |||
| 4371 | |||
| 4372 | /** |
||
| 4373 | * @brief Correlation of Q7 sequences. |
||
| 4374 | * @param[in] pSrcA points to the first input sequence. |
||
| 4375 | * @param[in] srcALen length of the first input sequence. |
||
| 4376 | * @param[in] pSrcB points to the second input sequence. |
||
| 4377 | * @param[in] srcBLen length of the second input sequence. |
||
| 4378 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4379 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
| 4380 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
| 4381 | */ |
||
| 4382 | void arm_correlate_opt_q7( |
||
| 4383 | q7_t * pSrcA, |
||
| 4384 | uint32_t srcALen, |
||
| 4385 | q7_t * pSrcB, |
||
| 4386 | uint32_t srcBLen, |
||
| 4387 | q7_t * pDst, |
||
| 4388 | q15_t * pScratch1, |
||
| 4389 | q15_t * pScratch2); |
||
| 4390 | |||
| 4391 | |||
| 4392 | /** |
||
| 4393 | * @brief Correlation of Q7 sequences. |
||
| 4394 | * @param[in] pSrcA points to the first input sequence. |
||
| 4395 | * @param[in] srcALen length of the first input sequence. |
||
| 4396 | * @param[in] pSrcB points to the second input sequence. |
||
| 4397 | * @param[in] srcBLen length of the second input sequence. |
||
| 4398 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
| 4399 | */ |
||
| 4400 | void arm_correlate_q7( |
||
| 4401 | q7_t * pSrcA, |
||
| 4402 | uint32_t srcALen, |
||
| 4403 | q7_t * pSrcB, |
||
| 4404 | uint32_t srcBLen, |
||
| 4405 | q7_t * pDst); |
||
| 4406 | |||
| 4407 | |||
| 4408 | /** |
||
| 4409 | * @brief Instance structure for the floating-point sparse FIR filter. |
||
| 4410 | */ |
||
| 4411 | typedef struct |
||
| 4412 | { |
||
| 4413 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4414 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
| 4415 | float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
| 4416 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 4417 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
| 4418 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
| 4419 | } arm_fir_sparse_instance_f32; |
||
| 4420 | |||
| 4421 | /** |
||
| 4422 | * @brief Instance structure for the Q31 sparse FIR filter. |
||
| 4423 | */ |
||
| 4424 | typedef struct |
||
| 4425 | { |
||
| 4426 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4427 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
| 4428 | q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
| 4429 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 4430 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
| 4431 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
| 4432 | } arm_fir_sparse_instance_q31; |
||
| 4433 | |||
| 4434 | /** |
||
| 4435 | * @brief Instance structure for the Q15 sparse FIR filter. |
||
| 4436 | */ |
||
| 4437 | typedef struct |
||
| 4438 | { |
||
| 4439 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4440 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
| 4441 | q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
| 4442 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 4443 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
| 4444 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
| 4445 | } arm_fir_sparse_instance_q15; |
||
| 4446 | |||
| 4447 | /** |
||
| 4448 | * @brief Instance structure for the Q7 sparse FIR filter. |
||
| 4449 | */ |
||
| 4450 | typedef struct |
||
| 4451 | { |
||
| 4452 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
| 4453 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
| 4454 | q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
| 4455 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
| 4456 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
| 4457 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
| 4458 | } arm_fir_sparse_instance_q7; |
||
| 4459 | |||
| 4460 | |||
| 4461 | /** |
||
| 4462 | * @brief Processing function for the floating-point sparse FIR filter. |
||
| 4463 | * @param[in] S points to an instance of the floating-point sparse FIR structure. |
||
| 4464 | * @param[in] pSrc points to the block of input data. |
||
| 4465 | * @param[out] pDst points to the block of output data |
||
| 4466 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
| 4467 | * @param[in] blockSize number of input samples to process per call. |
||
| 4468 | */ |
||
| 4469 | void arm_fir_sparse_f32( |
||
| 4470 | arm_fir_sparse_instance_f32 * S, |
||
| 4471 | float32_t * pSrc, |
||
| 4472 | float32_t * pDst, |
||
| 4473 | float32_t * pScratchIn, |
||
| 4474 | uint32_t blockSize); |
||
| 4475 | |||
| 4476 | |||
| 4477 | /** |
||
| 4478 | * @brief Initialization function for the floating-point sparse FIR filter. |
||
| 4479 | * @param[in,out] S points to an instance of the floating-point sparse FIR structure. |
||
| 4480 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
| 4481 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
| 4482 | * @param[in] pState points to the state buffer. |
||
| 4483 | * @param[in] pTapDelay points to the array of offset times. |
||
| 4484 | * @param[in] maxDelay maximum offset time supported. |
||
| 4485 | * @param[in] blockSize number of samples that will be processed per block. |
||
| 4486 | */ |
||
| 4487 | void arm_fir_sparse_init_f32( |
||
| 4488 | arm_fir_sparse_instance_f32 * S, |
||
| 4489 | uint16_t numTaps, |
||
| 4490 | float32_t * pCoeffs, |
||
| 4491 | float32_t * pState, |
||
| 4492 | int32_t * pTapDelay, |
||
| 4493 | uint16_t maxDelay, |
||
| 4494 | uint32_t blockSize); |
||
| 4495 | |||
| 4496 | |||
| 4497 | /** |
||
| 4498 | * @brief Processing function for the Q31 sparse FIR filter. |
||
| 4499 | * @param[in] S points to an instance of the Q31 sparse FIR structure. |
||
| 4500 | * @param[in] pSrc points to the block of input data. |
||
| 4501 | * @param[out] pDst points to the block of output data |
||
| 4502 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
| 4503 | * @param[in] blockSize number of input samples to process per call. |
||
| 4504 | */ |
||
| 4505 | void arm_fir_sparse_q31( |
||
| 4506 | arm_fir_sparse_instance_q31 * S, |
||
| 4507 | q31_t * pSrc, |
||
| 4508 | q31_t * pDst, |
||
| 4509 | q31_t * pScratchIn, |
||
| 4510 | uint32_t blockSize); |
||
| 4511 | |||
| 4512 | |||
| 4513 | /** |
||
| 4514 | * @brief Initialization function for the Q31 sparse FIR filter. |
||
| 4515 | * @param[in,out] S points to an instance of the Q31 sparse FIR structure. |
||
| 4516 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
| 4517 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
| 4518 | * @param[in] pState points to the state buffer. |
||
| 4519 | * @param[in] pTapDelay points to the array of offset times. |
||
| 4520 | * @param[in] maxDelay maximum offset time supported. |
||
| 4521 | * @param[in] blockSize number of samples that will be processed per block. |
||
| 4522 | */ |
||
| 4523 | void arm_fir_sparse_init_q31( |
||
| 4524 | arm_fir_sparse_instance_q31 * S, |
||
| 4525 | uint16_t numTaps, |
||
| 4526 | q31_t * pCoeffs, |
||
| 4527 | q31_t * pState, |
||
| 4528 | int32_t * pTapDelay, |
||
| 4529 | uint16_t maxDelay, |
||
| 4530 | uint32_t blockSize); |
||
| 4531 | |||
| 4532 | |||
| 4533 | /** |
||
| 4534 | * @brief Processing function for the Q15 sparse FIR filter. |
||
| 4535 | * @param[in] S points to an instance of the Q15 sparse FIR structure. |
||
| 4536 | * @param[in] pSrc points to the block of input data. |
||
| 4537 | * @param[out] pDst points to the block of output data |
||
| 4538 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
| 4539 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
||
| 4540 | * @param[in] blockSize number of input samples to process per call. |
||
| 4541 | */ |
||
| 4542 | void arm_fir_sparse_q15( |
||
| 4543 | arm_fir_sparse_instance_q15 * S, |
||
| 4544 | q15_t * pSrc, |
||
| 4545 | q15_t * pDst, |
||
| 4546 | q15_t * pScratchIn, |
||
| 4547 | q31_t * pScratchOut, |
||
| 4548 | uint32_t blockSize); |
||
| 4549 | |||
| 4550 | |||
| 4551 | /** |
||
| 4552 | * @brief Initialization function for the Q15 sparse FIR filter. |
||
| 4553 | * @param[in,out] S points to an instance of the Q15 sparse FIR structure. |
||
| 4554 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
| 4555 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
| 4556 | * @param[in] pState points to the state buffer. |
||
| 4557 | * @param[in] pTapDelay points to the array of offset times. |
||
| 4558 | * @param[in] maxDelay maximum offset time supported. |
||
| 4559 | * @param[in] blockSize number of samples that will be processed per block. |
||
| 4560 | */ |
||
| 4561 | void arm_fir_sparse_init_q15( |
||
| 4562 | arm_fir_sparse_instance_q15 * S, |
||
| 4563 | uint16_t numTaps, |
||
| 4564 | q15_t * pCoeffs, |
||
| 4565 | q15_t * pState, |
||
| 4566 | int32_t * pTapDelay, |
||
| 4567 | uint16_t maxDelay, |
||
| 4568 | uint32_t blockSize); |
||
| 4569 | |||
| 4570 | |||
| 4571 | /** |
||
| 4572 | * @brief Processing function for the Q7 sparse FIR filter. |
||
| 4573 | * @param[in] S points to an instance of the Q7 sparse FIR structure. |
||
| 4574 | * @param[in] pSrc points to the block of input data. |
||
| 4575 | * @param[out] pDst points to the block of output data |
||
| 4576 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
| 4577 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
||
| 4578 | * @param[in] blockSize number of input samples to process per call. |
||
| 4579 | */ |
||
| 4580 | void arm_fir_sparse_q7( |
||
| 4581 | arm_fir_sparse_instance_q7 * S, |
||
| 4582 | q7_t * pSrc, |
||
| 4583 | q7_t * pDst, |
||
| 4584 | q7_t * pScratchIn, |
||
| 4585 | q31_t * pScratchOut, |
||
| 4586 | uint32_t blockSize); |
||
| 4587 | |||
| 4588 | |||
| 4589 | /** |
||
| 4590 | * @brief Initialization function for the Q7 sparse FIR filter. |
||
| 4591 | * @param[in,out] S points to an instance of the Q7 sparse FIR structure. |
||
| 4592 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
| 4593 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
| 4594 | * @param[in] pState points to the state buffer. |
||
| 4595 | * @param[in] pTapDelay points to the array of offset times. |
||
| 4596 | * @param[in] maxDelay maximum offset time supported. |
||
| 4597 | * @param[in] blockSize number of samples that will be processed per block. |
||
| 4598 | */ |
||
| 4599 | void arm_fir_sparse_init_q7( |
||
| 4600 | arm_fir_sparse_instance_q7 * S, |
||
| 4601 | uint16_t numTaps, |
||
| 4602 | q7_t * pCoeffs, |
||
| 4603 | q7_t * pState, |
||
| 4604 | int32_t * pTapDelay, |
||
| 4605 | uint16_t maxDelay, |
||
| 4606 | uint32_t blockSize); |
||
| 4607 | |||
| 4608 | |||
| 4609 | /** |
||
| 4610 | * @brief Floating-point sin_cos function. |
||
| 4611 | * @param[in] theta input value in degrees |
||
| 4612 | * @param[out] pSinVal points to the processed sine output. |
||
| 4613 | * @param[out] pCosVal points to the processed cos output. |
||
| 4614 | */ |
||
| 4615 | void arm_sin_cos_f32( |
||
| 4616 | float32_t theta, |
||
| 4617 | float32_t * pSinVal, |
||
| 4618 | float32_t * pCosVal); |
||
| 4619 | |||
| 4620 | |||
| 4621 | /** |
||
| 4622 | * @brief Q31 sin_cos function. |
||
| 4623 | * @param[in] theta scaled input value in degrees |
||
| 4624 | * @param[out] pSinVal points to the processed sine output. |
||
| 4625 | * @param[out] pCosVal points to the processed cosine output. |
||
| 4626 | */ |
||
| 4627 | void arm_sin_cos_q31( |
||
| 4628 | q31_t theta, |
||
| 4629 | q31_t * pSinVal, |
||
| 4630 | q31_t * pCosVal); |
||
| 4631 | |||
| 4632 | |||
| 4633 | /** |
||
| 4634 | * @brief Floating-point complex conjugate. |
||
| 4635 | * @param[in] pSrc points to the input vector |
||
| 4636 | * @param[out] pDst points to the output vector |
||
| 4637 | * @param[in] numSamples number of complex samples in each vector |
||
| 4638 | */ |
||
| 4639 | void arm_cmplx_conj_f32( |
||
| 4640 | float32_t * pSrc, |
||
| 4641 | float32_t * pDst, |
||
| 4642 | uint32_t numSamples); |
||
| 4643 | |||
| 4644 | /** |
||
| 4645 | * @brief Q31 complex conjugate. |
||
| 4646 | * @param[in] pSrc points to the input vector |
||
| 4647 | * @param[out] pDst points to the output vector |
||
| 4648 | * @param[in] numSamples number of complex samples in each vector |
||
| 4649 | */ |
||
| 4650 | void arm_cmplx_conj_q31( |
||
| 4651 | q31_t * pSrc, |
||
| 4652 | q31_t * pDst, |
||
| 4653 | uint32_t numSamples); |
||
| 4654 | |||
| 4655 | |||
| 4656 | /** |
||
| 4657 | * @brief Q15 complex conjugate. |
||
| 4658 | * @param[in] pSrc points to the input vector |
||
| 4659 | * @param[out] pDst points to the output vector |
||
| 4660 | * @param[in] numSamples number of complex samples in each vector |
||
| 4661 | */ |
||
| 4662 | void arm_cmplx_conj_q15( |
||
| 4663 | q15_t * pSrc, |
||
| 4664 | q15_t * pDst, |
||
| 4665 | uint32_t numSamples); |
||
| 4666 | |||
| 4667 | |||
| 4668 | /** |
||
| 4669 | * @brief Floating-point complex magnitude squared |
||
| 4670 | * @param[in] pSrc points to the complex input vector |
||
| 4671 | * @param[out] pDst points to the real output vector |
||
| 4672 | * @param[in] numSamples number of complex samples in the input vector |
||
| 4673 | */ |
||
| 4674 | void arm_cmplx_mag_squared_f32( |
||
| 4675 | float32_t * pSrc, |
||
| 4676 | float32_t * pDst, |
||
| 4677 | uint32_t numSamples); |
||
| 4678 | |||
| 4679 | |||
| 4680 | /** |
||
| 4681 | * @brief Q31 complex magnitude squared |
||
| 4682 | * @param[in] pSrc points to the complex input vector |
||
| 4683 | * @param[out] pDst points to the real output vector |
||
| 4684 | * @param[in] numSamples number of complex samples in the input vector |
||
| 4685 | */ |
||
| 4686 | void arm_cmplx_mag_squared_q31( |
||
| 4687 | q31_t * pSrc, |
||
| 4688 | q31_t * pDst, |
||
| 4689 | uint32_t numSamples); |
||
| 4690 | |||
| 4691 | |||
| 4692 | /** |
||
| 4693 | * @brief Q15 complex magnitude squared |
||
| 4694 | * @param[in] pSrc points to the complex input vector |
||
| 4695 | * @param[out] pDst points to the real output vector |
||
| 4696 | * @param[in] numSamples number of complex samples in the input vector |
||
| 4697 | */ |
||
| 4698 | void arm_cmplx_mag_squared_q15( |
||
| 4699 | q15_t * pSrc, |
||
| 4700 | q15_t * pDst, |
||
| 4701 | uint32_t numSamples); |
||
| 4702 | |||
| 4703 | |||
| 4704 | /** |
||
| 4705 | * @ingroup groupController |
||
| 4706 | */ |
||
| 4707 | |||
| 4708 | /** |
||
| 4709 | * @defgroup PID PID Motor Control |
||
| 4710 | * |
||
| 4711 | * A Proportional Integral Derivative (PID) controller is a generic feedback control |
||
| 4712 | * loop mechanism widely used in industrial control systems. |
||
| 4713 | * A PID controller is the most commonly used type of feedback controller. |
||
| 4714 | * |
||
| 4715 | * This set of functions implements (PID) controllers |
||
| 4716 | * for Q15, Q31, and floating-point data types. The functions operate on a single sample |
||
| 4717 | * of data and each call to the function returns a single processed value. |
||
| 4718 | * <code>S</code> points to an instance of the PID control data structure. <code>in</code> |
||
| 4719 | * is the input sample value. The functions return the output value. |
||
| 4720 | * |
||
| 4721 | * \par Algorithm: |
||
| 4722 | * <pre> |
||
| 4723 | * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] |
||
| 4724 | * A0 = Kp + Ki + Kd |
||
| 4725 | * A1 = (-Kp ) - (2 * Kd ) |
||
| 4726 | * A2 = Kd </pre> |
||
| 4727 | * |
||
| 4728 | * \par |
||
| 4729 | * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant |
||
| 4730 | * |
||
| 4731 | * \par |
||
| 4732 | * \image html PID.gif "Proportional Integral Derivative Controller" |
||
| 4733 | * |
||
| 4734 | * \par |
||
| 4735 | * The PID controller calculates an "error" value as the difference between |
||
| 4736 | * the measured output and the reference input. |
||
| 4737 | * The controller attempts to minimize the error by adjusting the process control inputs. |
||
| 4738 | * The proportional value determines the reaction to the current error, |
||
| 4739 | * the integral value determines the reaction based on the sum of recent errors, |
||
| 4740 | * and the derivative value determines the reaction based on the rate at which the error has been changing. |
||
| 4741 | * |
||
| 4742 | * \par Instance Structure |
||
| 4743 | * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. |
||
| 4744 | * A separate instance structure must be defined for each PID Controller. |
||
| 4745 | * There are separate instance structure declarations for each of the 3 supported data types. |
||
| 4746 | * |
||
| 4747 | * \par Reset Functions |
||
| 4748 | * There is also an associated reset function for each data type which clears the state array. |
||
| 4749 | * |
||
| 4750 | * \par Initialization Functions |
||
| 4751 | * There is also an associated initialization function for each data type. |
||
| 4752 | * The initialization function performs the following operations: |
||
| 4753 | * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. |
||
| 4754 | * - Zeros out the values in the state buffer. |
||
| 4755 | * |
||
| 4756 | * \par |
||
| 4757 | * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. |
||
| 4758 | * |
||
| 4759 | * \par Fixed-Point Behavior |
||
| 4760 | * Care must be taken when using the fixed-point versions of the PID Controller functions. |
||
| 4761 | * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. |
||
| 4762 | * Refer to the function specific documentation below for usage guidelines. |
||
| 4763 | */ |
||
| 4764 | |||
| 4765 | /** |
||
| 4766 | * @addtogroup PID |
||
| 4767 | * @{ |
||
| 4768 | */ |
||
| 4769 | |||
| 4770 | /** |
||
| 4771 | * @brief Process function for the floating-point PID Control. |
||
| 4772 | * @param[in,out] S is an instance of the floating-point PID Control structure |
||
| 4773 | * @param[in] in input sample to process |
||
| 4774 | * @return out processed output sample. |
||
| 4775 | */ |
||
| 4776 | CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32( |
||
| 4777 | arm_pid_instance_f32 * S, |
||
| 4778 | float32_t in) |
||
| 4779 | { |
||
| 4780 | float32_t out; |
||
| 4781 | |||
| 4782 | /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ |
||
| 4783 | out = (S->A0 * in) + |
||
| 4784 | (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); |
||
| 4785 | |||
| 4786 | /* Update state */ |
||
| 4787 | S->state[1] = S->state[0]; |
||
| 4788 | S->state[0] = in; |
||
| 4789 | S->state[2] = out; |
||
| 4790 | |||
| 4791 | /* return to application */ |
||
| 4792 | return (out); |
||
| 4793 | |||
| 4794 | } |
||
| 4795 | |||
| 4796 | /** |
||
| 4797 | * @brief Process function for the Q31 PID Control. |
||
| 4798 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
||
| 4799 | * @param[in] in input sample to process |
||
| 4800 | * @return out processed output sample. |
||
| 4801 | * |
||
| 4802 | * <b>Scaling and Overflow Behavior:</b> |
||
| 4803 | * \par |
||
| 4804 | * The function is implemented using an internal 64-bit accumulator. |
||
| 4805 | * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
||
| 4806 | * Thus, if the accumulator result overflows it wraps around rather than clip. |
||
| 4807 | * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. |
||
| 4808 | * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. |
||
| 4809 | */ |
||
| 4810 | CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31( |
||
| 4811 | arm_pid_instance_q31 * S, |
||
| 4812 | q31_t in) |
||
| 4813 | { |
||
| 4814 | q63_t acc; |
||
| 4815 | q31_t out; |
||
| 4816 | |||
| 4817 | /* acc = A0 * x[n] */ |
||
| 4818 | acc = (q63_t) S->A0 * in; |
||
| 4819 | |||
| 4820 | /* acc += A1 * x[n-1] */ |
||
| 4821 | acc += (q63_t) S->A1 * S->state[0]; |
||
| 4822 | |||
| 4823 | /* acc += A2 * x[n-2] */ |
||
| 4824 | acc += (q63_t) S->A2 * S->state[1]; |
||
| 4825 | |||
| 4826 | /* convert output to 1.31 format to add y[n-1] */ |
||
| 4827 | out = (q31_t) (acc >> 31U); |
||
| 4828 | |||
| 4829 | /* out += y[n-1] */ |
||
| 4830 | out += S->state[2]; |
||
| 4831 | |||
| 4832 | /* Update state */ |
||
| 4833 | S->state[1] = S->state[0]; |
||
| 4834 | S->state[0] = in; |
||
| 4835 | S->state[2] = out; |
||
| 4836 | |||
| 4837 | /* return to application */ |
||
| 4838 | return (out); |
||
| 4839 | } |
||
| 4840 | |||
| 4841 | |||
| 4842 | /** |
||
| 4843 | * @brief Process function for the Q15 PID Control. |
||
| 4844 | * @param[in,out] S points to an instance of the Q15 PID Control structure |
||
| 4845 | * @param[in] in input sample to process |
||
| 4846 | * @return out processed output sample. |
||
| 4847 | * |
||
| 4848 | * <b>Scaling and Overflow Behavior:</b> |
||
| 4849 | * \par |
||
| 4850 | * The function is implemented using a 64-bit internal accumulator. |
||
| 4851 | * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. |
||
| 4852 | * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
||
| 4853 | * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. |
||
| 4854 | * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. |
||
| 4855 | * Lastly, the accumulator is saturated to yield a result in 1.15 format. |
||
| 4856 | */ |
||
| 4857 | CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15( |
||
| 4858 | arm_pid_instance_q15 * S, |
||
| 4859 | q15_t in) |
||
| 4860 | { |
||
| 4861 | q63_t acc; |
||
| 4862 | q15_t out; |
||
| 4863 | |||
| 4864 | #if defined (ARM_MATH_DSP) |
||
| 4865 | __SIMD32_TYPE *vstate; |
||
| 4866 | |||
| 4867 | /* Implementation of PID controller */ |
||
| 4868 | |||
| 4869 | /* acc = A0 * x[n] */ |
||
| 4870 | acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); |
||
| 4871 | |||
| 4872 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
| 4873 | vstate = __SIMD32_CONST(S->state); |
||
| 4874 | acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); |
||
| 4875 | #else |
||
| 4876 | /* acc = A0 * x[n] */ |
||
| 4877 | acc = ((q31_t) S->A0) * in; |
||
| 4878 | |||
| 4879 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
| 4880 | acc += (q31_t) S->A1 * S->state[0]; |
||
| 4881 | acc += (q31_t) S->A2 * S->state[1]; |
||
| 4882 | #endif |
||
| 4883 | |||
| 4884 | /* acc += y[n-1] */ |
||
| 4885 | acc += (q31_t) S->state[2] << 15; |
||
| 4886 | |||
| 4887 | /* saturate the output */ |
||
| 4888 | out = (q15_t) (__SSAT((acc >> 15), 16)); |
||
| 4889 | |||
| 4890 | /* Update state */ |
||
| 4891 | S->state[1] = S->state[0]; |
||
| 4892 | S->state[0] = in; |
||
| 4893 | S->state[2] = out; |
||
| 4894 | |||
| 4895 | /* return to application */ |
||
| 4896 | return (out); |
||
| 4897 | } |
||
| 4898 | |||
| 4899 | /** |
||
| 4900 | * @} end of PID group |
||
| 4901 | */ |
||
| 4902 | |||
| 4903 | |||
| 4904 | /** |
||
| 4905 | * @brief Floating-point matrix inverse. |
||
| 4906 | * @param[in] src points to the instance of the input floating-point matrix structure. |
||
| 4907 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
||
| 4908 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
||
| 4909 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
| 4910 | */ |
||
| 4911 | arm_status arm_mat_inverse_f32( |
||
| 4912 | const arm_matrix_instance_f32 * src, |
||
| 4913 | arm_matrix_instance_f32 * dst); |
||
| 4914 | |||
| 4915 | |||
| 4916 | /** |
||
| 4917 | * @brief Floating-point matrix inverse. |
||
| 4918 | * @param[in] src points to the instance of the input floating-point matrix structure. |
||
| 4919 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
||
| 4920 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
||
| 4921 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
| 4922 | */ |
||
| 4923 | arm_status arm_mat_inverse_f64( |
||
| 4924 | const arm_matrix_instance_f64 * src, |
||
| 4925 | arm_matrix_instance_f64 * dst); |
||
| 4926 | |||
| 4927 | |||
| 4928 | |||
| 4929 | /** |
||
| 4930 | * @ingroup groupController |
||
| 4931 | */ |
||
| 4932 | |||
| 4933 | /** |
||
| 4934 | * @defgroup clarke Vector Clarke Transform |
||
| 4935 | * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. |
||
| 4936 | * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents |
||
| 4937 | * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. |
||
| 4938 | * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below |
||
| 4939 | * \image html clarke.gif Stator current space vector and its components in (a,b). |
||
| 4940 | * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> |
||
| 4941 | * can be calculated using only <code>Ia</code> and <code>Ib</code>. |
||
| 4942 | * |
||
| 4943 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
| 4944 | * The library provides separate functions for Q31 and floating-point data types. |
||
| 4945 | * \par Algorithm |
||
| 4946 | * \image html clarkeFormula.gif |
||
| 4947 | * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and |
||
| 4948 | * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. |
||
| 4949 | * \par Fixed-Point Behavior |
||
| 4950 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
| 4951 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
| 4952 | * Refer to the function specific documentation below for usage guidelines. |
||
| 4953 | */ |
||
| 4954 | |||
| 4955 | /** |
||
| 4956 | * @addtogroup clarke |
||
| 4957 | * @{ |
||
| 4958 | */ |
||
| 4959 | |||
| 4960 | /** |
||
| 4961 | * |
||
| 4962 | * @brief Floating-point Clarke transform |
||
| 4963 | * @param[in] Ia input three-phase coordinate <code>a</code> |
||
| 4964 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
| 4965 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
| 4966 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
| 4967 | */ |
||
| 4968 | CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32( |
||
| 4969 | float32_t Ia, |
||
| 4970 | float32_t Ib, |
||
| 4971 | float32_t * pIalpha, |
||
| 4972 | float32_t * pIbeta) |
||
| 4973 | { |
||
| 4974 | /* Calculate pIalpha using the equation, pIalpha = Ia */ |
||
| 4975 | *pIalpha = Ia; |
||
| 4976 | |||
| 4977 | /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ |
||
| 4978 | *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); |
||
| 4979 | } |
||
| 4980 | |||
| 4981 | |||
| 4982 | /** |
||
| 4983 | * @brief Clarke transform for Q31 version |
||
| 4984 | * @param[in] Ia input three-phase coordinate <code>a</code> |
||
| 4985 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
| 4986 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
| 4987 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
| 4988 | * |
||
| 4989 | * <b>Scaling and Overflow Behavior:</b> |
||
| 4990 | * \par |
||
| 4991 | * The function is implemented using an internal 32-bit accumulator. |
||
| 4992 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
| 4993 | * There is saturation on the addition, hence there is no risk of overflow. |
||
| 4994 | */ |
||
| 4995 | CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31( |
||
| 4996 | q31_t Ia, |
||
| 4997 | q31_t Ib, |
||
| 4998 | q31_t * pIalpha, |
||
| 4999 | q31_t * pIbeta) |
||
| 5000 | { |
||
| 5001 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
| 5002 | |||
| 5003 | /* Calculating pIalpha from Ia by equation pIalpha = Ia */ |
||
| 5004 | *pIalpha = Ia; |
||
| 5005 | |||
| 5006 | /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ |
||
| 5007 | product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); |
||
| 5008 | |||
| 5009 | /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ |
||
| 5010 | product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); |
||
| 5011 | |||
| 5012 | /* pIbeta is calculated by adding the intermediate products */ |
||
| 5013 | *pIbeta = __QADD(product1, product2); |
||
| 5014 | } |
||
| 5015 | |||
| 5016 | /** |
||
| 5017 | * @} end of clarke group |
||
| 5018 | */ |
||
| 5019 | |||
| 5020 | /** |
||
| 5021 | * @brief Converts the elements of the Q7 vector to Q31 vector. |
||
| 5022 | * @param[in] pSrc input pointer |
||
| 5023 | * @param[out] pDst output pointer |
||
| 5024 | * @param[in] blockSize number of samples to process |
||
| 5025 | */ |
||
| 5026 | void arm_q7_to_q31( |
||
| 5027 | q7_t * pSrc, |
||
| 5028 | q31_t * pDst, |
||
| 5029 | uint32_t blockSize); |
||
| 5030 | |||
| 5031 | |||
| 5032 | |||
| 5033 | /** |
||
| 5034 | * @ingroup groupController |
||
| 5035 | */ |
||
| 5036 | |||
| 5037 | /** |
||
| 5038 | * @defgroup inv_clarke Vector Inverse Clarke Transform |
||
| 5039 | * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. |
||
| 5040 | * |
||
| 5041 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
| 5042 | * The library provides separate functions for Q31 and floating-point data types. |
||
| 5043 | * \par Algorithm |
||
| 5044 | * \image html clarkeInvFormula.gif |
||
| 5045 | * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and |
||
| 5046 | * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. |
||
| 5047 | * \par Fixed-Point Behavior |
||
| 5048 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
| 5049 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
| 5050 | * Refer to the function specific documentation below for usage guidelines. |
||
| 5051 | */ |
||
| 5052 | |||
| 5053 | /** |
||
| 5054 | * @addtogroup inv_clarke |
||
| 5055 | * @{ |
||
| 5056 | */ |
||
| 5057 | |||
| 5058 | /** |
||
| 5059 | * @brief Floating-point Inverse Clarke transform |
||
| 5060 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
||
| 5061 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
| 5062 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
||
| 5063 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
||
| 5064 | */ |
||
| 5065 | CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32( |
||
| 5066 | float32_t Ialpha, |
||
| 5067 | float32_t Ibeta, |
||
| 5068 | float32_t * pIa, |
||
| 5069 | float32_t * pIb) |
||
| 5070 | { |
||
| 5071 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
| 5072 | *pIa = Ialpha; |
||
| 5073 | |||
| 5074 | /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ |
||
| 5075 | *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; |
||
| 5076 | } |
||
| 5077 | |||
| 5078 | |||
| 5079 | /** |
||
| 5080 | * @brief Inverse Clarke transform for Q31 version |
||
| 5081 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
||
| 5082 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
| 5083 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
||
| 5084 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
||
| 5085 | * |
||
| 5086 | * <b>Scaling and Overflow Behavior:</b> |
||
| 5087 | * \par |
||
| 5088 | * The function is implemented using an internal 32-bit accumulator. |
||
| 5089 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
| 5090 | * There is saturation on the subtraction, hence there is no risk of overflow. |
||
| 5091 | */ |
||
| 5092 | CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31( |
||
| 5093 | q31_t Ialpha, |
||
| 5094 | q31_t Ibeta, |
||
| 5095 | q31_t * pIa, |
||
| 5096 | q31_t * pIb) |
||
| 5097 | { |
||
| 5098 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
| 5099 | |||
| 5100 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
| 5101 | *pIa = Ialpha; |
||
| 5102 | |||
| 5103 | /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ |
||
| 5104 | product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); |
||
| 5105 | |||
| 5106 | /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ |
||
| 5107 | product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); |
||
| 5108 | |||
| 5109 | /* pIb is calculated by subtracting the products */ |
||
| 5110 | *pIb = __QSUB(product2, product1); |
||
| 5111 | } |
||
| 5112 | |||
| 5113 | /** |
||
| 5114 | * @} end of inv_clarke group |
||
| 5115 | */ |
||
| 5116 | |||
| 5117 | /** |
||
| 5118 | * @brief Converts the elements of the Q7 vector to Q15 vector. |
||
| 5119 | * @param[in] pSrc input pointer |
||
| 5120 | * @param[out] pDst output pointer |
||
| 5121 | * @param[in] blockSize number of samples to process |
||
| 5122 | */ |
||
| 5123 | void arm_q7_to_q15( |
||
| 5124 | q7_t * pSrc, |
||
| 5125 | q15_t * pDst, |
||
| 5126 | uint32_t blockSize); |
||
| 5127 | |||
| 5128 | |||
| 5129 | |||
| 5130 | /** |
||
| 5131 | * @ingroup groupController |
||
| 5132 | */ |
||
| 5133 | |||
| 5134 | /** |
||
| 5135 | * @defgroup park Vector Park Transform |
||
| 5136 | * |
||
| 5137 | * Forward Park transform converts the input two-coordinate vector to flux and torque components. |
||
| 5138 | * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents |
||
| 5139 | * from the stationary to the moving reference frame and control the spatial relationship between |
||
| 5140 | * the stator vector current and rotor flux vector. |
||
| 5141 | * If we consider the d axis aligned with the rotor flux, the diagram below shows the |
||
| 5142 | * current vector and the relationship from the two reference frames: |
||
| 5143 | * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" |
||
| 5144 | * |
||
| 5145 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
| 5146 | * The library provides separate functions for Q31 and floating-point data types. |
||
| 5147 | * \par Algorithm |
||
| 5148 | * \image html parkFormula.gif |
||
| 5149 | * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, |
||
| 5150 | * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
| 5151 | * cosine and sine values of theta (rotor flux position). |
||
| 5152 | * \par Fixed-Point Behavior |
||
| 5153 | * Care must be taken when using the Q31 version of the Park transform. |
||
| 5154 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
| 5155 | * Refer to the function specific documentation below for usage guidelines. |
||
| 5156 | */ |
||
| 5157 | |||
| 5158 | /** |
||
| 5159 | * @addtogroup park |
||
| 5160 | * @{ |
||
| 5161 | */ |
||
| 5162 | |||
| 5163 | /** |
||
| 5164 | * @brief Floating-point Park transform |
||
| 5165 | * @param[in] Ialpha input two-phase vector coordinate alpha |
||
| 5166 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
| 5167 | * @param[out] pId points to output rotor reference frame d |
||
| 5168 | * @param[out] pIq points to output rotor reference frame q |
||
| 5169 | * @param[in] sinVal sine value of rotation angle theta |
||
| 5170 | * @param[in] cosVal cosine value of rotation angle theta |
||
| 5171 | * |
||
| 5172 | * The function implements the forward Park transform. |
||
| 5173 | * |
||
| 5174 | */ |
||
| 5175 | CMSIS_INLINE __STATIC_INLINE void arm_park_f32( |
||
| 5176 | float32_t Ialpha, |
||
| 5177 | float32_t Ibeta, |
||
| 5178 | float32_t * pId, |
||
| 5179 | float32_t * pIq, |
||
| 5180 | float32_t sinVal, |
||
| 5181 | float32_t cosVal) |
||
| 5182 | { |
||
| 5183 | /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ |
||
| 5184 | *pId = Ialpha * cosVal + Ibeta * sinVal; |
||
| 5185 | |||
| 5186 | /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ |
||
| 5187 | *pIq = -Ialpha * sinVal + Ibeta * cosVal; |
||
| 5188 | } |
||
| 5189 | |||
| 5190 | |||
| 5191 | /** |
||
| 5192 | * @brief Park transform for Q31 version |
||
| 5193 | * @param[in] Ialpha input two-phase vector coordinate alpha |
||
| 5194 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
| 5195 | * @param[out] pId points to output rotor reference frame d |
||
| 5196 | * @param[out] pIq points to output rotor reference frame q |
||
| 5197 | * @param[in] sinVal sine value of rotation angle theta |
||
| 5198 | * @param[in] cosVal cosine value of rotation angle theta |
||
| 5199 | * |
||
| 5200 | * <b>Scaling and Overflow Behavior:</b> |
||
| 5201 | * \par |
||
| 5202 | * The function is implemented using an internal 32-bit accumulator. |
||
| 5203 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
| 5204 | * There is saturation on the addition and subtraction, hence there is no risk of overflow. |
||
| 5205 | */ |
||
| 5206 | CMSIS_INLINE __STATIC_INLINE void arm_park_q31( |
||
| 5207 | q31_t Ialpha, |
||
| 5208 | q31_t Ibeta, |
||
| 5209 | q31_t * pId, |
||
| 5210 | q31_t * pIq, |
||
| 5211 | q31_t sinVal, |
||
| 5212 | q31_t cosVal) |
||
| 5213 | { |
||
| 5214 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
| 5215 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
| 5216 | |||
| 5217 | /* Intermediate product is calculated by (Ialpha * cosVal) */ |
||
| 5218 | product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); |
||
| 5219 | |||
| 5220 | /* Intermediate product is calculated by (Ibeta * sinVal) */ |
||
| 5221 | product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); |
||
| 5222 | |||
| 5223 | |||
| 5224 | /* Intermediate product is calculated by (Ialpha * sinVal) */ |
||
| 5225 | product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); |
||
| 5226 | |||
| 5227 | /* Intermediate product is calculated by (Ibeta * cosVal) */ |
||
| 5228 | product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); |
||
| 5229 | |||
| 5230 | /* Calculate pId by adding the two intermediate products 1 and 2 */ |
||
| 5231 | *pId = __QADD(product1, product2); |
||
| 5232 | |||
| 5233 | /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ |
||
| 5234 | *pIq = __QSUB(product4, product3); |
||
| 5235 | } |
||
| 5236 | |||
| 5237 | /** |
||
| 5238 | * @} end of park group |
||
| 5239 | */ |
||
| 5240 | |||
| 5241 | /** |
||
| 5242 | * @brief Converts the elements of the Q7 vector to floating-point vector. |
||
| 5243 | * @param[in] pSrc is input pointer |
||
| 5244 | * @param[out] pDst is output pointer |
||
| 5245 | * @param[in] blockSize is the number of samples to process |
||
| 5246 | */ |
||
| 5247 | void arm_q7_to_float( |
||
| 5248 | q7_t * pSrc, |
||
| 5249 | float32_t * pDst, |
||
| 5250 | uint32_t blockSize); |
||
| 5251 | |||
| 5252 | |||
| 5253 | /** |
||
| 5254 | * @ingroup groupController |
||
| 5255 | */ |
||
| 5256 | |||
| 5257 | /** |
||
| 5258 | * @defgroup inv_park Vector Inverse Park transform |
||
| 5259 | * Inverse Park transform converts the input flux and torque components to two-coordinate vector. |
||
| 5260 | * |
||
| 5261 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
| 5262 | * The library provides separate functions for Q31 and floating-point data types. |
||
| 5263 | * \par Algorithm |
||
| 5264 | * \image html parkInvFormula.gif |
||
| 5265 | * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, |
||
| 5266 | * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
| 5267 | * cosine and sine values of theta (rotor flux position). |
||
| 5268 | * \par Fixed-Point Behavior |
||
| 5269 | * Care must be taken when using the Q31 version of the Park transform. |
||
| 5270 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
| 5271 | * Refer to the function specific documentation below for usage guidelines. |
||
| 5272 | */ |
||
| 5273 | |||
| 5274 | /** |
||
| 5275 | * @addtogroup inv_park |
||
| 5276 | * @{ |
||
| 5277 | */ |
||
| 5278 | |||
| 5279 | /** |
||
| 5280 | * @brief Floating-point Inverse Park transform |
||
| 5281 | * @param[in] Id input coordinate of rotor reference frame d |
||
| 5282 | * @param[in] Iq input coordinate of rotor reference frame q |
||
| 5283 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
| 5284 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
| 5285 | * @param[in] sinVal sine value of rotation angle theta |
||
| 5286 | * @param[in] cosVal cosine value of rotation angle theta |
||
| 5287 | */ |
||
| 5288 | CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32( |
||
| 5289 | float32_t Id, |
||
| 5290 | float32_t Iq, |
||
| 5291 | float32_t * pIalpha, |
||
| 5292 | float32_t * pIbeta, |
||
| 5293 | float32_t sinVal, |
||
| 5294 | float32_t cosVal) |
||
| 5295 | { |
||
| 5296 | /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ |
||
| 5297 | *pIalpha = Id * cosVal - Iq * sinVal; |
||
| 5298 | |||
| 5299 | /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ |
||
| 5300 | *pIbeta = Id * sinVal + Iq * cosVal; |
||
| 5301 | } |
||
| 5302 | |||
| 5303 | |||
| 5304 | /** |
||
| 5305 | * @brief Inverse Park transform for Q31 version |
||
| 5306 | * @param[in] Id input coordinate of rotor reference frame d |
||
| 5307 | * @param[in] Iq input coordinate of rotor reference frame q |
||
| 5308 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
| 5309 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
| 5310 | * @param[in] sinVal sine value of rotation angle theta |
||
| 5311 | * @param[in] cosVal cosine value of rotation angle theta |
||
| 5312 | * |
||
| 5313 | * <b>Scaling and Overflow Behavior:</b> |
||
| 5314 | * \par |
||
| 5315 | * The function is implemented using an internal 32-bit accumulator. |
||
| 5316 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
| 5317 | * There is saturation on the addition, hence there is no risk of overflow. |
||
| 5318 | */ |
||
| 5319 | CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31( |
||
| 5320 | q31_t Id, |
||
| 5321 | q31_t Iq, |
||
| 5322 | q31_t * pIalpha, |
||
| 5323 | q31_t * pIbeta, |
||
| 5324 | q31_t sinVal, |
||
| 5325 | q31_t cosVal) |
||
| 5326 | { |
||
| 5327 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
| 5328 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
| 5329 | |||
| 5330 | /* Intermediate product is calculated by (Id * cosVal) */ |
||
| 5331 | product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); |
||
| 5332 | |||
| 5333 | /* Intermediate product is calculated by (Iq * sinVal) */ |
||
| 5334 | product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); |
||
| 5335 | |||
| 5336 | |||
| 5337 | /* Intermediate product is calculated by (Id * sinVal) */ |
||
| 5338 | product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); |
||
| 5339 | |||
| 5340 | /* Intermediate product is calculated by (Iq * cosVal) */ |
||
| 5341 | product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); |
||
| 5342 | |||
| 5343 | /* Calculate pIalpha by using the two intermediate products 1 and 2 */ |
||
| 5344 | *pIalpha = __QSUB(product1, product2); |
||
| 5345 | |||
| 5346 | /* Calculate pIbeta by using the two intermediate products 3 and 4 */ |
||
| 5347 | *pIbeta = __QADD(product4, product3); |
||
| 5348 | } |
||
| 5349 | |||
| 5350 | /** |
||
| 5351 | * @} end of Inverse park group |
||
| 5352 | */ |
||
| 5353 | |||
| 5354 | |||
| 5355 | /** |
||
| 5356 | * @brief Converts the elements of the Q31 vector to floating-point vector. |
||
| 5357 | * @param[in] pSrc is input pointer |
||
| 5358 | * @param[out] pDst is output pointer |
||
| 5359 | * @param[in] blockSize is the number of samples to process |
||
| 5360 | */ |
||
| 5361 | void arm_q31_to_float( |
||
| 5362 | q31_t * pSrc, |
||
| 5363 | float32_t * pDst, |
||
| 5364 | uint32_t blockSize); |
||
| 5365 | |||
| 5366 | /** |
||
| 5367 | * @ingroup groupInterpolation |
||
| 5368 | */ |
||
| 5369 | |||
| 5370 | /** |
||
| 5371 | * @defgroup LinearInterpolate Linear Interpolation |
||
| 5372 | * |
||
| 5373 | * Linear interpolation is a method of curve fitting using linear polynomials. |
||
| 5374 | * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line |
||
| 5375 | * |
||
| 5376 | * \par |
||
| 5377 | * \image html LinearInterp.gif "Linear interpolation" |
||
| 5378 | * |
||
| 5379 | * \par |
||
| 5380 | * A Linear Interpolate function calculates an output value(y), for the input(x) |
||
| 5381 | * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) |
||
| 5382 | * |
||
| 5383 | * \par Algorithm: |
||
| 5384 | * <pre> |
||
| 5385 | * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) |
||
| 5386 | * where x0, x1 are nearest values of input x |
||
| 5387 | * y0, y1 are nearest values to output y |
||
| 5388 | * </pre> |
||
| 5389 | * |
||
| 5390 | * \par |
||
| 5391 | * This set of functions implements Linear interpolation process |
||
| 5392 | * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single |
||
| 5393 | * sample of data and each call to the function returns a single processed value. |
||
| 5394 | * <code>S</code> points to an instance of the Linear Interpolate function data structure. |
||
| 5395 | * <code>x</code> is the input sample value. The functions returns the output value. |
||
| 5396 | * |
||
| 5397 | * \par |
||
| 5398 | * if x is outside of the table boundary, Linear interpolation returns first value of the table |
||
| 5399 | * if x is below input range and returns last value of table if x is above range. |
||
| 5400 | */ |
||
| 5401 | |||
| 5402 | /** |
||
| 5403 | * @addtogroup LinearInterpolate |
||
| 5404 | * @{ |
||
| 5405 | */ |
||
| 5406 | |||
| 5407 | /** |
||
| 5408 | * @brief Process function for the floating-point Linear Interpolation Function. |
||
| 5409 | * @param[in,out] S is an instance of the floating-point Linear Interpolation structure |
||
| 5410 | * @param[in] x input sample to process |
||
| 5411 | * @return y processed output sample. |
||
| 5412 | * |
||
| 5413 | */ |
||
| 5414 | CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32( |
||
| 5415 | arm_linear_interp_instance_f32 * S, |
||
| 5416 | float32_t x) |
||
| 5417 | { |
||
| 5418 | float32_t y; |
||
| 5419 | float32_t x0, x1; /* Nearest input values */ |
||
| 5420 | float32_t y0, y1; /* Nearest output values */ |
||
| 5421 | float32_t xSpacing = S->xSpacing; /* spacing between input values */ |
||
| 5422 | int32_t i; /* Index variable */ |
||
| 5423 | float32_t *pYData = S->pYData; /* pointer to output table */ |
||
| 5424 | |||
| 5425 | /* Calculation of index */ |
||
| 5426 | i = (int32_t) ((x - S->x1) / xSpacing); |
||
| 5427 | |||
| 5428 | if (i < 0) |
||
| 5429 | { |
||
| 5430 | /* Iniatilize output for below specified range as least output value of table */ |
||
| 5431 | y = pYData[0]; |
||
| 5432 | } |
||
| 5433 | else if ((uint32_t)i >= S->nValues) |
||
| 5434 | { |
||
| 5435 | /* Iniatilize output for above specified range as last output value of table */ |
||
| 5436 | y = pYData[S->nValues - 1]; |
||
| 5437 | } |
||
| 5438 | else |
||
| 5439 | { |
||
| 5440 | /* Calculation of nearest input values */ |
||
| 5441 | x0 = S->x1 + i * xSpacing; |
||
| 5442 | x1 = S->x1 + (i + 1) * xSpacing; |
||
| 5443 | |||
| 5444 | /* Read of nearest output values */ |
||
| 5445 | y0 = pYData[i]; |
||
| 5446 | y1 = pYData[i + 1]; |
||
| 5447 | |||
| 5448 | /* Calculation of output */ |
||
| 5449 | y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); |
||
| 5450 | |||
| 5451 | } |
||
| 5452 | |||
| 5453 | /* returns output value */ |
||
| 5454 | return (y); |
||
| 5455 | } |
||
| 5456 | |||
| 5457 | |||
| 5458 | /** |
||
| 5459 | * |
||
| 5460 | * @brief Process function for the Q31 Linear Interpolation Function. |
||
| 5461 | * @param[in] pYData pointer to Q31 Linear Interpolation table |
||
| 5462 | * @param[in] x input sample to process |
||
| 5463 | * @param[in] nValues number of table values |
||
| 5464 | * @return y processed output sample. |
||
| 5465 | * |
||
| 5466 | * \par |
||
| 5467 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
| 5468 | * This function can support maximum of table size 2^12. |
||
| 5469 | * |
||
| 5470 | */ |
||
| 5471 | CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31( |
||
| 5472 | q31_t * pYData, |
||
| 5473 | q31_t x, |
||
| 5474 | uint32_t nValues) |
||
| 5475 | { |
||
| 5476 | q31_t y; /* output */ |
||
| 5477 | q31_t y0, y1; /* Nearest output values */ |
||
| 5478 | q31_t fract; /* fractional part */ |
||
| 5479 | int32_t index; /* Index to read nearest output values */ |
||
| 5480 | |||
| 5481 | /* Input is in 12.20 format */ |
||
| 5482 | /* 12 bits for the table index */ |
||
| 5483 | /* Index value calculation */ |
||
| 5484 | index = ((x & (q31_t)0xFFF00000) >> 20); |
||
| 5485 | |||
| 5486 | if (index >= (int32_t)(nValues - 1)) |
||
| 5487 | { |
||
| 5488 | return (pYData[nValues - 1]); |
||
| 5489 | } |
||
| 5490 | else if (index < 0) |
||
| 5491 | { |
||
| 5492 | return (pYData[0]); |
||
| 5493 | } |
||
| 5494 | else |
||
| 5495 | { |
||
| 5496 | /* 20 bits for the fractional part */ |
||
| 5497 | /* shift left by 11 to keep fract in 1.31 format */ |
||
| 5498 | fract = (x & 0x000FFFFF) << 11; |
||
| 5499 | |||
| 5500 | /* Read two nearest output values from the index in 1.31(q31) format */ |
||
| 5501 | y0 = pYData[index]; |
||
| 5502 | y1 = pYData[index + 1]; |
||
| 5503 | |||
| 5504 | /* Calculation of y0 * (1-fract) and y is in 2.30 format */ |
||
| 5505 | y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); |
||
| 5506 | |||
| 5507 | /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ |
||
| 5508 | y += ((q31_t) (((q63_t) y1 * fract) >> 32)); |
||
| 5509 | |||
| 5510 | /* Convert y to 1.31 format */ |
||
| 5511 | return (y << 1U); |
||
| 5512 | } |
||
| 5513 | } |
||
| 5514 | |||
| 5515 | |||
| 5516 | /** |
||
| 5517 | * |
||
| 5518 | * @brief Process function for the Q15 Linear Interpolation Function. |
||
| 5519 | * @param[in] pYData pointer to Q15 Linear Interpolation table |
||
| 5520 | * @param[in] x input sample to process |
||
| 5521 | * @param[in] nValues number of table values |
||
| 5522 | * @return y processed output sample. |
||
| 5523 | * |
||
| 5524 | * \par |
||
| 5525 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
| 5526 | * This function can support maximum of table size 2^12. |
||
| 5527 | * |
||
| 5528 | */ |
||
| 5529 | CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15( |
||
| 5530 | q15_t * pYData, |
||
| 5531 | q31_t x, |
||
| 5532 | uint32_t nValues) |
||
| 5533 | { |
||
| 5534 | q63_t y; /* output */ |
||
| 5535 | q15_t y0, y1; /* Nearest output values */ |
||
| 5536 | q31_t fract; /* fractional part */ |
||
| 5537 | int32_t index; /* Index to read nearest output values */ |
||
| 5538 | |||
| 5539 | /* Input is in 12.20 format */ |
||
| 5540 | /* 12 bits for the table index */ |
||
| 5541 | /* Index value calculation */ |
||
| 5542 | index = ((x & (int32_t)0xFFF00000) >> 20); |
||
| 5543 | |||
| 5544 | if (index >= (int32_t)(nValues - 1)) |
||
| 5545 | { |
||
| 5546 | return (pYData[nValues - 1]); |
||
| 5547 | } |
||
| 5548 | else if (index < 0) |
||
| 5549 | { |
||
| 5550 | return (pYData[0]); |
||
| 5551 | } |
||
| 5552 | else |
||
| 5553 | { |
||
| 5554 | /* 20 bits for the fractional part */ |
||
| 5555 | /* fract is in 12.20 format */ |
||
| 5556 | fract = (x & 0x000FFFFF); |
||
| 5557 | |||
| 5558 | /* Read two nearest output values from the index */ |
||
| 5559 | y0 = pYData[index]; |
||
| 5560 | y1 = pYData[index + 1]; |
||
| 5561 | |||
| 5562 | /* Calculation of y0 * (1-fract) and y is in 13.35 format */ |
||
| 5563 | y = ((q63_t) y0 * (0xFFFFF - fract)); |
||
| 5564 | |||
| 5565 | /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ |
||
| 5566 | y += ((q63_t) y1 * (fract)); |
||
| 5567 | |||
| 5568 | /* convert y to 1.15 format */ |
||
| 5569 | return (q15_t) (y >> 20); |
||
| 5570 | } |
||
| 5571 | } |
||
| 5572 | |||
| 5573 | |||
| 5574 | /** |
||
| 5575 | * |
||
| 5576 | * @brief Process function for the Q7 Linear Interpolation Function. |
||
| 5577 | * @param[in] pYData pointer to Q7 Linear Interpolation table |
||
| 5578 | * @param[in] x input sample to process |
||
| 5579 | * @param[in] nValues number of table values |
||
| 5580 | * @return y processed output sample. |
||
| 5581 | * |
||
| 5582 | * \par |
||
| 5583 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
| 5584 | * This function can support maximum of table size 2^12. |
||
| 5585 | */ |
||
| 5586 | CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7( |
||
| 5587 | q7_t * pYData, |
||
| 5588 | q31_t x, |
||
| 5589 | uint32_t nValues) |
||
| 5590 | { |
||
| 5591 | q31_t y; /* output */ |
||
| 5592 | q7_t y0, y1; /* Nearest output values */ |
||
| 5593 | q31_t fract; /* fractional part */ |
||
| 5594 | uint32_t index; /* Index to read nearest output values */ |
||
| 5595 | |||
| 5596 | /* Input is in 12.20 format */ |
||
| 5597 | /* 12 bits for the table index */ |
||
| 5598 | /* Index value calculation */ |
||
| 5599 | if (x < 0) |
||
| 5600 | { |
||
| 5601 | return (pYData[0]); |
||
| 5602 | } |
||
| 5603 | index = (x >> 20) & 0xfff; |
||
| 5604 | |||
| 5605 | if (index >= (nValues - 1)) |
||
| 5606 | { |
||
| 5607 | return (pYData[nValues - 1]); |
||
| 5608 | } |
||
| 5609 | else |
||
| 5610 | { |
||
| 5611 | /* 20 bits for the fractional part */ |
||
| 5612 | /* fract is in 12.20 format */ |
||
| 5613 | fract = (x & 0x000FFFFF); |
||
| 5614 | |||
| 5615 | /* Read two nearest output values from the index and are in 1.7(q7) format */ |
||
| 5616 | y0 = pYData[index]; |
||
| 5617 | y1 = pYData[index + 1]; |
||
| 5618 | |||
| 5619 | /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ |
||
| 5620 | y = ((y0 * (0xFFFFF - fract))); |
||
| 5621 | |||
| 5622 | /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ |
||
| 5623 | y += (y1 * fract); |
||
| 5624 | |||
| 5625 | /* convert y to 1.7(q7) format */ |
||
| 5626 | return (q7_t) (y >> 20); |
||
| 5627 | } |
||
| 5628 | } |
||
| 5629 | |||
| 5630 | /** |
||
| 5631 | * @} end of LinearInterpolate group |
||
| 5632 | */ |
||
| 5633 | |||
| 5634 | /** |
||
| 5635 | * @brief Fast approximation to the trigonometric sine function for floating-point data. |
||
| 5636 | * @param[in] x input value in radians. |
||
| 5637 | * @return sin(x). |
||
| 5638 | */ |
||
| 5639 | float32_t arm_sin_f32( |
||
| 5640 | float32_t x); |
||
| 5641 | |||
| 5642 | |||
| 5643 | /** |
||
| 5644 | * @brief Fast approximation to the trigonometric sine function for Q31 data. |
||
| 5645 | * @param[in] x Scaled input value in radians. |
||
| 5646 | * @return sin(x). |
||
| 5647 | */ |
||
| 5648 | q31_t arm_sin_q31( |
||
| 5649 | q31_t x); |
||
| 5650 | |||
| 5651 | |||
| 5652 | /** |
||
| 5653 | * @brief Fast approximation to the trigonometric sine function for Q15 data. |
||
| 5654 | * @param[in] x Scaled input value in radians. |
||
| 5655 | * @return sin(x). |
||
| 5656 | */ |
||
| 5657 | q15_t arm_sin_q15( |
||
| 5658 | q15_t x); |
||
| 5659 | |||
| 5660 | |||
| 5661 | /** |
||
| 5662 | * @brief Fast approximation to the trigonometric cosine function for floating-point data. |
||
| 5663 | * @param[in] x input value in radians. |
||
| 5664 | * @return cos(x). |
||
| 5665 | */ |
||
| 5666 | float32_t arm_cos_f32( |
||
| 5667 | float32_t x); |
||
| 5668 | |||
| 5669 | |||
| 5670 | /** |
||
| 5671 | * @brief Fast approximation to the trigonometric cosine function for Q31 data. |
||
| 5672 | * @param[in] x Scaled input value in radians. |
||
| 5673 | * @return cos(x). |
||
| 5674 | */ |
||
| 5675 | q31_t arm_cos_q31( |
||
| 5676 | q31_t x); |
||
| 5677 | |||
| 5678 | |||
| 5679 | /** |
||
| 5680 | * @brief Fast approximation to the trigonometric cosine function for Q15 data. |
||
| 5681 | * @param[in] x Scaled input value in radians. |
||
| 5682 | * @return cos(x). |
||
| 5683 | */ |
||
| 5684 | q15_t arm_cos_q15( |
||
| 5685 | q15_t x); |
||
| 5686 | |||
| 5687 | |||
| 5688 | /** |
||
| 5689 | * @ingroup groupFastMath |
||
| 5690 | */ |
||
| 5691 | |||
| 5692 | |||
| 5693 | /** |
||
| 5694 | * @defgroup SQRT Square Root |
||
| 5695 | * |
||
| 5696 | * Computes the square root of a number. |
||
| 5697 | * There are separate functions for Q15, Q31, and floating-point data types. |
||
| 5698 | * The square root function is computed using the Newton-Raphson algorithm. |
||
| 5699 | * This is an iterative algorithm of the form: |
||
| 5700 | * <pre> |
||
| 5701 | * x1 = x0 - f(x0)/f'(x0) |
||
| 5702 | * </pre> |
||
| 5703 | * where <code>x1</code> is the current estimate, |
||
| 5704 | * <code>x0</code> is the previous estimate, and |
||
| 5705 | * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. |
||
| 5706 | * For the square root function, the algorithm reduces to: |
||
| 5707 | * <pre> |
||
| 5708 | * x0 = in/2 [initial guess] |
||
| 5709 | * x1 = 1/2 * ( x0 + in / x0) [each iteration] |
||
| 5710 | * </pre> |
||
| 5711 | */ |
||
| 5712 | |||
| 5713 | |||
| 5714 | /** |
||
| 5715 | * @addtogroup SQRT |
||
| 5716 | * @{ |
||
| 5717 | */ |
||
| 5718 | |||
| 5719 | /** |
||
| 5720 | * @brief Floating-point square root function. |
||
| 5721 | * @param[in] in input value. |
||
| 5722 | * @param[out] pOut square root of input value. |
||
| 5723 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
| 5724 | * <code>in</code> is negative value and returns zero output for negative values. |
||
| 5725 | */ |
||
| 5726 | CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32( |
||
| 5727 | float32_t in, |
||
| 5728 | float32_t * pOut) |
||
| 5729 | { |
||
| 5730 | if (in >= 0.0f) |
||
| 5731 | { |
||
| 5732 | |||
| 5733 | #if (__FPU_USED == 1) && defined ( __CC_ARM ) |
||
| 5734 | *pOut = __sqrtf(in); |
||
| 5735 | #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) |
||
| 5736 | *pOut = __builtin_sqrtf(in); |
||
| 5737 | #elif (__FPU_USED == 1) && defined(__GNUC__) |
||
| 5738 | *pOut = __builtin_sqrtf(in); |
||
| 5739 | #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) |
||
| 5740 | __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); |
||
| 5741 | #else |
||
| 5742 | *pOut = sqrtf(in); |
||
| 5743 | #endif |
||
| 5744 | |||
| 5745 | return (ARM_MATH_SUCCESS); |
||
| 5746 | } |
||
| 5747 | else |
||
| 5748 | { |
||
| 5749 | *pOut = 0.0f; |
||
| 5750 | return (ARM_MATH_ARGUMENT_ERROR); |
||
| 5751 | } |
||
| 5752 | } |
||
| 5753 | |||
| 5754 | |||
| 5755 | /** |
||
| 5756 | * @brief Q31 square root function. |
||
| 5757 | * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. |
||
| 5758 | * @param[out] pOut square root of input value. |
||
| 5759 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
| 5760 | * <code>in</code> is negative value and returns zero output for negative values. |
||
| 5761 | */ |
||
| 5762 | arm_status arm_sqrt_q31( |
||
| 5763 | q31_t in, |
||
| 5764 | q31_t * pOut); |
||
| 5765 | |||
| 5766 | |||
| 5767 | /** |
||
| 5768 | * @brief Q15 square root function. |
||
| 5769 | * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
||
| 5770 | * @param[out] pOut square root of input value. |
||
| 5771 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
| 5772 | * <code>in</code> is negative value and returns zero output for negative values. |
||
| 5773 | */ |
||
| 5774 | arm_status arm_sqrt_q15( |
||
| 5775 | q15_t in, |
||
| 5776 | q15_t * pOut); |
||
| 5777 | |||
| 5778 | /** |
||
| 5779 | * @} end of SQRT group |
||
| 5780 | */ |
||
| 5781 | |||
| 5782 | |||
| 5783 | /** |
||
| 5784 | * @brief floating-point Circular write function. |
||
| 5785 | */ |
||
| 5786 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32( |
||
| 5787 | int32_t * circBuffer, |
||
| 5788 | int32_t L, |
||
| 5789 | uint16_t * writeOffset, |
||
| 5790 | int32_t bufferInc, |
||
| 5791 | const int32_t * src, |
||
| 5792 | int32_t srcInc, |
||
| 5793 | uint32_t blockSize) |
||
| 5794 | { |
||
| 5795 | uint32_t i = 0U; |
||
| 5796 | int32_t wOffset; |
||
| 5797 | |||
| 5798 | /* Copy the value of Index pointer that points |
||
| 5799 | * to the current location where the input samples to be copied */ |
||
| 5800 | wOffset = *writeOffset; |
||
| 5801 | |||
| 5802 | /* Loop over the blockSize */ |
||
| 5803 | i = blockSize; |
||
| 5804 | |||
| 5805 | while (i > 0U) |
||
| 5806 | { |
||
| 5807 | /* copy the input sample to the circular buffer */ |
||
| 5808 | circBuffer[wOffset] = *src; |
||
| 5809 | |||
| 5810 | /* Update the input pointer */ |
||
| 5811 | src += srcInc; |
||
| 5812 | |||
| 5813 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
| 5814 | wOffset += bufferInc; |
||
| 5815 | if (wOffset >= L) |
||
| 5816 | wOffset -= L; |
||
| 5817 | |||
| 5818 | /* Decrement the loop counter */ |
||
| 5819 | i--; |
||
| 5820 | } |
||
| 5821 | |||
| 5822 | /* Update the index pointer */ |
||
| 5823 | *writeOffset = (uint16_t)wOffset; |
||
| 5824 | } |
||
| 5825 | |||
| 5826 | |||
| 5827 | |||
| 5828 | /** |
||
| 5829 | * @brief floating-point Circular Read function. |
||
| 5830 | */ |
||
| 5831 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32( |
||
| 5832 | int32_t * circBuffer, |
||
| 5833 | int32_t L, |
||
| 5834 | int32_t * readOffset, |
||
| 5835 | int32_t bufferInc, |
||
| 5836 | int32_t * dst, |
||
| 5837 | int32_t * dst_base, |
||
| 5838 | int32_t dst_length, |
||
| 5839 | int32_t dstInc, |
||
| 5840 | uint32_t blockSize) |
||
| 5841 | { |
||
| 5842 | uint32_t i = 0U; |
||
| 5843 | int32_t rOffset, dst_end; |
||
| 5844 | |||
| 5845 | /* Copy the value of Index pointer that points |
||
| 5846 | * to the current location from where the input samples to be read */ |
||
| 5847 | rOffset = *readOffset; |
||
| 5848 | dst_end = (int32_t) (dst_base + dst_length); |
||
| 5849 | |||
| 5850 | /* Loop over the blockSize */ |
||
| 5851 | i = blockSize; |
||
| 5852 | |||
| 5853 | while (i > 0U) |
||
| 5854 | { |
||
| 5855 | /* copy the sample from the circular buffer to the destination buffer */ |
||
| 5856 | *dst = circBuffer[rOffset]; |
||
| 5857 | |||
| 5858 | /* Update the input pointer */ |
||
| 5859 | dst += dstInc; |
||
| 5860 | |||
| 5861 | if (dst == (int32_t *) dst_end) |
||
| 5862 | { |
||
| 5863 | dst = dst_base; |
||
| 5864 | } |
||
| 5865 | |||
| 5866 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
| 5867 | rOffset += bufferInc; |
||
| 5868 | |||
| 5869 | if (rOffset >= L) |
||
| 5870 | { |
||
| 5871 | rOffset -= L; |
||
| 5872 | } |
||
| 5873 | |||
| 5874 | /* Decrement the loop counter */ |
||
| 5875 | i--; |
||
| 5876 | } |
||
| 5877 | |||
| 5878 | /* Update the index pointer */ |
||
| 5879 | *readOffset = rOffset; |
||
| 5880 | } |
||
| 5881 | |||
| 5882 | |||
| 5883 | /** |
||
| 5884 | * @brief Q15 Circular write function. |
||
| 5885 | */ |
||
| 5886 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15( |
||
| 5887 | q15_t * circBuffer, |
||
| 5888 | int32_t L, |
||
| 5889 | uint16_t * writeOffset, |
||
| 5890 | int32_t bufferInc, |
||
| 5891 | const q15_t * src, |
||
| 5892 | int32_t srcInc, |
||
| 5893 | uint32_t blockSize) |
||
| 5894 | { |
||
| 5895 | uint32_t i = 0U; |
||
| 5896 | int32_t wOffset; |
||
| 5897 | |||
| 5898 | /* Copy the value of Index pointer that points |
||
| 5899 | * to the current location where the input samples to be copied */ |
||
| 5900 | wOffset = *writeOffset; |
||
| 5901 | |||
| 5902 | /* Loop over the blockSize */ |
||
| 5903 | i = blockSize; |
||
| 5904 | |||
| 5905 | while (i > 0U) |
||
| 5906 | { |
||
| 5907 | /* copy the input sample to the circular buffer */ |
||
| 5908 | circBuffer[wOffset] = *src; |
||
| 5909 | |||
| 5910 | /* Update the input pointer */ |
||
| 5911 | src += srcInc; |
||
| 5912 | |||
| 5913 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
| 5914 | wOffset += bufferInc; |
||
| 5915 | if (wOffset >= L) |
||
| 5916 | wOffset -= L; |
||
| 5917 | |||
| 5918 | /* Decrement the loop counter */ |
||
| 5919 | i--; |
||
| 5920 | } |
||
| 5921 | |||
| 5922 | /* Update the index pointer */ |
||
| 5923 | *writeOffset = (uint16_t)wOffset; |
||
| 5924 | } |
||
| 5925 | |||
| 5926 | |||
| 5927 | /** |
||
| 5928 | * @brief Q15 Circular Read function. |
||
| 5929 | */ |
||
| 5930 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15( |
||
| 5931 | q15_t * circBuffer, |
||
| 5932 | int32_t L, |
||
| 5933 | int32_t * readOffset, |
||
| 5934 | int32_t bufferInc, |
||
| 5935 | q15_t * dst, |
||
| 5936 | q15_t * dst_base, |
||
| 5937 | int32_t dst_length, |
||
| 5938 | int32_t dstInc, |
||
| 5939 | uint32_t blockSize) |
||
| 5940 | { |
||
| 5941 | uint32_t i = 0; |
||
| 5942 | int32_t rOffset, dst_end; |
||
| 5943 | |||
| 5944 | /* Copy the value of Index pointer that points |
||
| 5945 | * to the current location from where the input samples to be read */ |
||
| 5946 | rOffset = *readOffset; |
||
| 5947 | |||
| 5948 | dst_end = (int32_t) (dst_base + dst_length); |
||
| 5949 | |||
| 5950 | /* Loop over the blockSize */ |
||
| 5951 | i = blockSize; |
||
| 5952 | |||
| 5953 | while (i > 0U) |
||
| 5954 | { |
||
| 5955 | /* copy the sample from the circular buffer to the destination buffer */ |
||
| 5956 | *dst = circBuffer[rOffset]; |
||
| 5957 | |||
| 5958 | /* Update the input pointer */ |
||
| 5959 | dst += dstInc; |
||
| 5960 | |||
| 5961 | if (dst == (q15_t *) dst_end) |
||
| 5962 | { |
||
| 5963 | dst = dst_base; |
||
| 5964 | } |
||
| 5965 | |||
| 5966 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
| 5967 | rOffset += bufferInc; |
||
| 5968 | |||
| 5969 | if (rOffset >= L) |
||
| 5970 | { |
||
| 5971 | rOffset -= L; |
||
| 5972 | } |
||
| 5973 | |||
| 5974 | /* Decrement the loop counter */ |
||
| 5975 | i--; |
||
| 5976 | } |
||
| 5977 | |||
| 5978 | /* Update the index pointer */ |
||
| 5979 | *readOffset = rOffset; |
||
| 5980 | } |
||
| 5981 | |||
| 5982 | |||
| 5983 | /** |
||
| 5984 | * @brief Q7 Circular write function. |
||
| 5985 | */ |
||
| 5986 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7( |
||
| 5987 | q7_t * circBuffer, |
||
| 5988 | int32_t L, |
||
| 5989 | uint16_t * writeOffset, |
||
| 5990 | int32_t bufferInc, |
||
| 5991 | const q7_t * src, |
||
| 5992 | int32_t srcInc, |
||
| 5993 | uint32_t blockSize) |
||
| 5994 | { |
||
| 5995 | uint32_t i = 0U; |
||
| 5996 | int32_t wOffset; |
||
| 5997 | |||
| 5998 | /* Copy the value of Index pointer that points |
||
| 5999 | * to the current location where the input samples to be copied */ |
||
| 6000 | wOffset = *writeOffset; |
||
| 6001 | |||
| 6002 | /* Loop over the blockSize */ |
||
| 6003 | i = blockSize; |
||
| 6004 | |||
| 6005 | while (i > 0U) |
||
| 6006 | { |
||
| 6007 | /* copy the input sample to the circular buffer */ |
||
| 6008 | circBuffer[wOffset] = *src; |
||
| 6009 | |||
| 6010 | /* Update the input pointer */ |
||
| 6011 | src += srcInc; |
||
| 6012 | |||
| 6013 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
| 6014 | wOffset += bufferInc; |
||
| 6015 | if (wOffset >= L) |
||
| 6016 | wOffset -= L; |
||
| 6017 | |||
| 6018 | /* Decrement the loop counter */ |
||
| 6019 | i--; |
||
| 6020 | } |
||
| 6021 | |||
| 6022 | /* Update the index pointer */ |
||
| 6023 | *writeOffset = (uint16_t)wOffset; |
||
| 6024 | } |
||
| 6025 | |||
| 6026 | |||
| 6027 | /** |
||
| 6028 | * @brief Q7 Circular Read function. |
||
| 6029 | */ |
||
| 6030 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7( |
||
| 6031 | q7_t * circBuffer, |
||
| 6032 | int32_t L, |
||
| 6033 | int32_t * readOffset, |
||
| 6034 | int32_t bufferInc, |
||
| 6035 | q7_t * dst, |
||
| 6036 | q7_t * dst_base, |
||
| 6037 | int32_t dst_length, |
||
| 6038 | int32_t dstInc, |
||
| 6039 | uint32_t blockSize) |
||
| 6040 | { |
||
| 6041 | uint32_t i = 0; |
||
| 6042 | int32_t rOffset, dst_end; |
||
| 6043 | |||
| 6044 | /* Copy the value of Index pointer that points |
||
| 6045 | * to the current location from where the input samples to be read */ |
||
| 6046 | rOffset = *readOffset; |
||
| 6047 | |||
| 6048 | dst_end = (int32_t) (dst_base + dst_length); |
||
| 6049 | |||
| 6050 | /* Loop over the blockSize */ |
||
| 6051 | i = blockSize; |
||
| 6052 | |||
| 6053 | while (i > 0U) |
||
| 6054 | { |
||
| 6055 | /* copy the sample from the circular buffer to the destination buffer */ |
||
| 6056 | *dst = circBuffer[rOffset]; |
||
| 6057 | |||
| 6058 | /* Update the input pointer */ |
||
| 6059 | dst += dstInc; |
||
| 6060 | |||
| 6061 | if (dst == (q7_t *) dst_end) |
||
| 6062 | { |
||
| 6063 | dst = dst_base; |
||
| 6064 | } |
||
| 6065 | |||
| 6066 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
| 6067 | rOffset += bufferInc; |
||
| 6068 | |||
| 6069 | if (rOffset >= L) |
||
| 6070 | { |
||
| 6071 | rOffset -= L; |
||
| 6072 | } |
||
| 6073 | |||
| 6074 | /* Decrement the loop counter */ |
||
| 6075 | i--; |
||
| 6076 | } |
||
| 6077 | |||
| 6078 | /* Update the index pointer */ |
||
| 6079 | *readOffset = rOffset; |
||
| 6080 | } |
||
| 6081 | |||
| 6082 | |||
| 6083 | /** |
||
| 6084 | * @brief Sum of the squares of the elements of a Q31 vector. |
||
| 6085 | * @param[in] pSrc is input pointer |
||
| 6086 | * @param[in] blockSize is the number of samples to process |
||
| 6087 | * @param[out] pResult is output value. |
||
| 6088 | */ |
||
| 6089 | void arm_power_q31( |
||
| 6090 | q31_t * pSrc, |
||
| 6091 | uint32_t blockSize, |
||
| 6092 | q63_t * pResult); |
||
| 6093 | |||
| 6094 | |||
| 6095 | /** |
||
| 6096 | * @brief Sum of the squares of the elements of a floating-point vector. |
||
| 6097 | * @param[in] pSrc is input pointer |
||
| 6098 | * @param[in] blockSize is the number of samples to process |
||
| 6099 | * @param[out] pResult is output value. |
||
| 6100 | */ |
||
| 6101 | void arm_power_f32( |
||
| 6102 | float32_t * pSrc, |
||
| 6103 | uint32_t blockSize, |
||
| 6104 | float32_t * pResult); |
||
| 6105 | |||
| 6106 | |||
| 6107 | /** |
||
| 6108 | * @brief Sum of the squares of the elements of a Q15 vector. |
||
| 6109 | * @param[in] pSrc is input pointer |
||
| 6110 | * @param[in] blockSize is the number of samples to process |
||
| 6111 | * @param[out] pResult is output value. |
||
| 6112 | */ |
||
| 6113 | void arm_power_q15( |
||
| 6114 | q15_t * pSrc, |
||
| 6115 | uint32_t blockSize, |
||
| 6116 | q63_t * pResult); |
||
| 6117 | |||
| 6118 | |||
| 6119 | /** |
||
| 6120 | * @brief Sum of the squares of the elements of a Q7 vector. |
||
| 6121 | * @param[in] pSrc is input pointer |
||
| 6122 | * @param[in] blockSize is the number of samples to process |
||
| 6123 | * @param[out] pResult is output value. |
||
| 6124 | */ |
||
| 6125 | void arm_power_q7( |
||
| 6126 | q7_t * pSrc, |
||
| 6127 | uint32_t blockSize, |
||
| 6128 | q31_t * pResult); |
||
| 6129 | |||
| 6130 | |||
| 6131 | /** |
||
| 6132 | * @brief Mean value of a Q7 vector. |
||
| 6133 | * @param[in] pSrc is input pointer |
||
| 6134 | * @param[in] blockSize is the number of samples to process |
||
| 6135 | * @param[out] pResult is output value. |
||
| 6136 | */ |
||
| 6137 | void arm_mean_q7( |
||
| 6138 | q7_t * pSrc, |
||
| 6139 | uint32_t blockSize, |
||
| 6140 | q7_t * pResult); |
||
| 6141 | |||
| 6142 | |||
| 6143 | /** |
||
| 6144 | * @brief Mean value of a Q15 vector. |
||
| 6145 | * @param[in] pSrc is input pointer |
||
| 6146 | * @param[in] blockSize is the number of samples to process |
||
| 6147 | * @param[out] pResult is output value. |
||
| 6148 | */ |
||
| 6149 | void arm_mean_q15( |
||
| 6150 | q15_t * pSrc, |
||
| 6151 | uint32_t blockSize, |
||
| 6152 | q15_t * pResult); |
||
| 6153 | |||
| 6154 | |||
| 6155 | /** |
||
| 6156 | * @brief Mean value of a Q31 vector. |
||
| 6157 | * @param[in] pSrc is input pointer |
||
| 6158 | * @param[in] blockSize is the number of samples to process |
||
| 6159 | * @param[out] pResult is output value. |
||
| 6160 | */ |
||
| 6161 | void arm_mean_q31( |
||
| 6162 | q31_t * pSrc, |
||
| 6163 | uint32_t blockSize, |
||
| 6164 | q31_t * pResult); |
||
| 6165 | |||
| 6166 | |||
| 6167 | /** |
||
| 6168 | * @brief Mean value of a floating-point vector. |
||
| 6169 | * @param[in] pSrc is input pointer |
||
| 6170 | * @param[in] blockSize is the number of samples to process |
||
| 6171 | * @param[out] pResult is output value. |
||
| 6172 | */ |
||
| 6173 | void arm_mean_f32( |
||
| 6174 | float32_t * pSrc, |
||
| 6175 | uint32_t blockSize, |
||
| 6176 | float32_t * pResult); |
||
| 6177 | |||
| 6178 | |||
| 6179 | /** |
||
| 6180 | * @brief Variance of the elements of a floating-point vector. |
||
| 6181 | * @param[in] pSrc is input pointer |
||
| 6182 | * @param[in] blockSize is the number of samples to process |
||
| 6183 | * @param[out] pResult is output value. |
||
| 6184 | */ |
||
| 6185 | void arm_var_f32( |
||
| 6186 | float32_t * pSrc, |
||
| 6187 | uint32_t blockSize, |
||
| 6188 | float32_t * pResult); |
||
| 6189 | |||
| 6190 | |||
| 6191 | /** |
||
| 6192 | * @brief Variance of the elements of a Q31 vector. |
||
| 6193 | * @param[in] pSrc is input pointer |
||
| 6194 | * @param[in] blockSize is the number of samples to process |
||
| 6195 | * @param[out] pResult is output value. |
||
| 6196 | */ |
||
| 6197 | void arm_var_q31( |
||
| 6198 | q31_t * pSrc, |
||
| 6199 | uint32_t blockSize, |
||
| 6200 | q31_t * pResult); |
||
| 6201 | |||
| 6202 | |||
| 6203 | /** |
||
| 6204 | * @brief Variance of the elements of a Q15 vector. |
||
| 6205 | * @param[in] pSrc is input pointer |
||
| 6206 | * @param[in] blockSize is the number of samples to process |
||
| 6207 | * @param[out] pResult is output value. |
||
| 6208 | */ |
||
| 6209 | void arm_var_q15( |
||
| 6210 | q15_t * pSrc, |
||
| 6211 | uint32_t blockSize, |
||
| 6212 | q15_t * pResult); |
||
| 6213 | |||
| 6214 | |||
| 6215 | /** |
||
| 6216 | * @brief Root Mean Square of the elements of a floating-point vector. |
||
| 6217 | * @param[in] pSrc is input pointer |
||
| 6218 | * @param[in] blockSize is the number of samples to process |
||
| 6219 | * @param[out] pResult is output value. |
||
| 6220 | */ |
||
| 6221 | void arm_rms_f32( |
||
| 6222 | float32_t * pSrc, |
||
| 6223 | uint32_t blockSize, |
||
| 6224 | float32_t * pResult); |
||
| 6225 | |||
| 6226 | |||
| 6227 | /** |
||
| 6228 | * @brief Root Mean Square of the elements of a Q31 vector. |
||
| 6229 | * @param[in] pSrc is input pointer |
||
| 6230 | * @param[in] blockSize is the number of samples to process |
||
| 6231 | * @param[out] pResult is output value. |
||
| 6232 | */ |
||
| 6233 | void arm_rms_q31( |
||
| 6234 | q31_t * pSrc, |
||
| 6235 | uint32_t blockSize, |
||
| 6236 | q31_t * pResult); |
||
| 6237 | |||
| 6238 | |||
| 6239 | /** |
||
| 6240 | * @brief Root Mean Square of the elements of a Q15 vector. |
||
| 6241 | * @param[in] pSrc is input pointer |
||
| 6242 | * @param[in] blockSize is the number of samples to process |
||
| 6243 | * @param[out] pResult is output value. |
||
| 6244 | */ |
||
| 6245 | void arm_rms_q15( |
||
| 6246 | q15_t * pSrc, |
||
| 6247 | uint32_t blockSize, |
||
| 6248 | q15_t * pResult); |
||
| 6249 | |||
| 6250 | |||
| 6251 | /** |
||
| 6252 | * @brief Standard deviation of the elements of a floating-point vector. |
||
| 6253 | * @param[in] pSrc is input pointer |
||
| 6254 | * @param[in] blockSize is the number of samples to process |
||
| 6255 | * @param[out] pResult is output value. |
||
| 6256 | */ |
||
| 6257 | void arm_std_f32( |
||
| 6258 | float32_t * pSrc, |
||
| 6259 | uint32_t blockSize, |
||
| 6260 | float32_t * pResult); |
||
| 6261 | |||
| 6262 | |||
| 6263 | /** |
||
| 6264 | * @brief Standard deviation of the elements of a Q31 vector. |
||
| 6265 | * @param[in] pSrc is input pointer |
||
| 6266 | * @param[in] blockSize is the number of samples to process |
||
| 6267 | * @param[out] pResult is output value. |
||
| 6268 | */ |
||
| 6269 | void arm_std_q31( |
||
| 6270 | q31_t * pSrc, |
||
| 6271 | uint32_t blockSize, |
||
| 6272 | q31_t * pResult); |
||
| 6273 | |||
| 6274 | |||
| 6275 | /** |
||
| 6276 | * @brief Standard deviation of the elements of a Q15 vector. |
||
| 6277 | * @param[in] pSrc is input pointer |
||
| 6278 | * @param[in] blockSize is the number of samples to process |
||
| 6279 | * @param[out] pResult is output value. |
||
| 6280 | */ |
||
| 6281 | void arm_std_q15( |
||
| 6282 | q15_t * pSrc, |
||
| 6283 | uint32_t blockSize, |
||
| 6284 | q15_t * pResult); |
||
| 6285 | |||
| 6286 | |||
| 6287 | /** |
||
| 6288 | * @brief Floating-point complex magnitude |
||
| 6289 | * @param[in] pSrc points to the complex input vector |
||
| 6290 | * @param[out] pDst points to the real output vector |
||
| 6291 | * @param[in] numSamples number of complex samples in the input vector |
||
| 6292 | */ |
||
| 6293 | void arm_cmplx_mag_f32( |
||
| 6294 | float32_t * pSrc, |
||
| 6295 | float32_t * pDst, |
||
| 6296 | uint32_t numSamples); |
||
| 6297 | |||
| 6298 | |||
| 6299 | /** |
||
| 6300 | * @brief Q31 complex magnitude |
||
| 6301 | * @param[in] pSrc points to the complex input vector |
||
| 6302 | * @param[out] pDst points to the real output vector |
||
| 6303 | * @param[in] numSamples number of complex samples in the input vector |
||
| 6304 | */ |
||
| 6305 | void arm_cmplx_mag_q31( |
||
| 6306 | q31_t * pSrc, |
||
| 6307 | q31_t * pDst, |
||
| 6308 | uint32_t numSamples); |
||
| 6309 | |||
| 6310 | |||
| 6311 | /** |
||
| 6312 | * @brief Q15 complex magnitude |
||
| 6313 | * @param[in] pSrc points to the complex input vector |
||
| 6314 | * @param[out] pDst points to the real output vector |
||
| 6315 | * @param[in] numSamples number of complex samples in the input vector |
||
| 6316 | */ |
||
| 6317 | void arm_cmplx_mag_q15( |
||
| 6318 | q15_t * pSrc, |
||
| 6319 | q15_t * pDst, |
||
| 6320 | uint32_t numSamples); |
||
| 6321 | |||
| 6322 | |||
| 6323 | /** |
||
| 6324 | * @brief Q15 complex dot product |
||
| 6325 | * @param[in] pSrcA points to the first input vector |
||
| 6326 | * @param[in] pSrcB points to the second input vector |
||
| 6327 | * @param[in] numSamples number of complex samples in each vector |
||
| 6328 | * @param[out] realResult real part of the result returned here |
||
| 6329 | * @param[out] imagResult imaginary part of the result returned here |
||
| 6330 | */ |
||
| 6331 | void arm_cmplx_dot_prod_q15( |
||
| 6332 | q15_t * pSrcA, |
||
| 6333 | q15_t * pSrcB, |
||
| 6334 | uint32_t numSamples, |
||
| 6335 | q31_t * realResult, |
||
| 6336 | q31_t * imagResult); |
||
| 6337 | |||
| 6338 | |||
| 6339 | /** |
||
| 6340 | * @brief Q31 complex dot product |
||
| 6341 | * @param[in] pSrcA points to the first input vector |
||
| 6342 | * @param[in] pSrcB points to the second input vector |
||
| 6343 | * @param[in] numSamples number of complex samples in each vector |
||
| 6344 | * @param[out] realResult real part of the result returned here |
||
| 6345 | * @param[out] imagResult imaginary part of the result returned here |
||
| 6346 | */ |
||
| 6347 | void arm_cmplx_dot_prod_q31( |
||
| 6348 | q31_t * pSrcA, |
||
| 6349 | q31_t * pSrcB, |
||
| 6350 | uint32_t numSamples, |
||
| 6351 | q63_t * realResult, |
||
| 6352 | q63_t * imagResult); |
||
| 6353 | |||
| 6354 | |||
| 6355 | /** |
||
| 6356 | * @brief Floating-point complex dot product |
||
| 6357 | * @param[in] pSrcA points to the first input vector |
||
| 6358 | * @param[in] pSrcB points to the second input vector |
||
| 6359 | * @param[in] numSamples number of complex samples in each vector |
||
| 6360 | * @param[out] realResult real part of the result returned here |
||
| 6361 | * @param[out] imagResult imaginary part of the result returned here |
||
| 6362 | */ |
||
| 6363 | void arm_cmplx_dot_prod_f32( |
||
| 6364 | float32_t * pSrcA, |
||
| 6365 | float32_t * pSrcB, |
||
| 6366 | uint32_t numSamples, |
||
| 6367 | float32_t * realResult, |
||
| 6368 | float32_t * imagResult); |
||
| 6369 | |||
| 6370 | |||
| 6371 | /** |
||
| 6372 | * @brief Q15 complex-by-real multiplication |
||
| 6373 | * @param[in] pSrcCmplx points to the complex input vector |
||
| 6374 | * @param[in] pSrcReal points to the real input vector |
||
| 6375 | * @param[out] pCmplxDst points to the complex output vector |
||
| 6376 | * @param[in] numSamples number of samples in each vector |
||
| 6377 | */ |
||
| 6378 | void arm_cmplx_mult_real_q15( |
||
| 6379 | q15_t * pSrcCmplx, |
||
| 6380 | q15_t * pSrcReal, |
||
| 6381 | q15_t * pCmplxDst, |
||
| 6382 | uint32_t numSamples); |
||
| 6383 | |||
| 6384 | |||
| 6385 | /** |
||
| 6386 | * @brief Q31 complex-by-real multiplication |
||
| 6387 | * @param[in] pSrcCmplx points to the complex input vector |
||
| 6388 | * @param[in] pSrcReal points to the real input vector |
||
| 6389 | * @param[out] pCmplxDst points to the complex output vector |
||
| 6390 | * @param[in] numSamples number of samples in each vector |
||
| 6391 | */ |
||
| 6392 | void arm_cmplx_mult_real_q31( |
||
| 6393 | q31_t * pSrcCmplx, |
||
| 6394 | q31_t * pSrcReal, |
||
| 6395 | q31_t * pCmplxDst, |
||
| 6396 | uint32_t numSamples); |
||
| 6397 | |||
| 6398 | |||
| 6399 | /** |
||
| 6400 | * @brief Floating-point complex-by-real multiplication |
||
| 6401 | * @param[in] pSrcCmplx points to the complex input vector |
||
| 6402 | * @param[in] pSrcReal points to the real input vector |
||
| 6403 | * @param[out] pCmplxDst points to the complex output vector |
||
| 6404 | * @param[in] numSamples number of samples in each vector |
||
| 6405 | */ |
||
| 6406 | void arm_cmplx_mult_real_f32( |
||
| 6407 | float32_t * pSrcCmplx, |
||
| 6408 | float32_t * pSrcReal, |
||
| 6409 | float32_t * pCmplxDst, |
||
| 6410 | uint32_t numSamples); |
||
| 6411 | |||
| 6412 | |||
| 6413 | /** |
||
| 6414 | * @brief Minimum value of a Q7 vector. |
||
| 6415 | * @param[in] pSrc is input pointer |
||
| 6416 | * @param[in] blockSize is the number of samples to process |
||
| 6417 | * @param[out] result is output pointer |
||
| 6418 | * @param[in] index is the array index of the minimum value in the input buffer. |
||
| 6419 | */ |
||
| 6420 | void arm_min_q7( |
||
| 6421 | q7_t * pSrc, |
||
| 6422 | uint32_t blockSize, |
||
| 6423 | q7_t * result, |
||
| 6424 | uint32_t * index); |
||
| 6425 | |||
| 6426 | |||
| 6427 | /** |
||
| 6428 | * @brief Minimum value of a Q15 vector. |
||
| 6429 | * @param[in] pSrc is input pointer |
||
| 6430 | * @param[in] blockSize is the number of samples to process |
||
| 6431 | * @param[out] pResult is output pointer |
||
| 6432 | * @param[in] pIndex is the array index of the minimum value in the input buffer. |
||
| 6433 | */ |
||
| 6434 | void arm_min_q15( |
||
| 6435 | q15_t * pSrc, |
||
| 6436 | uint32_t blockSize, |
||
| 6437 | q15_t * pResult, |
||
| 6438 | uint32_t * pIndex); |
||
| 6439 | |||
| 6440 | |||
| 6441 | /** |
||
| 6442 | * @brief Minimum value of a Q31 vector. |
||
| 6443 | * @param[in] pSrc is input pointer |
||
| 6444 | * @param[in] blockSize is the number of samples to process |
||
| 6445 | * @param[out] pResult is output pointer |
||
| 6446 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
||
| 6447 | */ |
||
| 6448 | void arm_min_q31( |
||
| 6449 | q31_t * pSrc, |
||
| 6450 | uint32_t blockSize, |
||
| 6451 | q31_t * pResult, |
||
| 6452 | uint32_t * pIndex); |
||
| 6453 | |||
| 6454 | |||
| 6455 | /** |
||
| 6456 | * @brief Minimum value of a floating-point vector. |
||
| 6457 | * @param[in] pSrc is input pointer |
||
| 6458 | * @param[in] blockSize is the number of samples to process |
||
| 6459 | * @param[out] pResult is output pointer |
||
| 6460 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
||
| 6461 | */ |
||
| 6462 | void arm_min_f32( |
||
| 6463 | float32_t * pSrc, |
||
| 6464 | uint32_t blockSize, |
||
| 6465 | float32_t * pResult, |
||
| 6466 | uint32_t * pIndex); |
||
| 6467 | |||
| 6468 | |||
| 6469 | /** |
||
| 6470 | * @brief Maximum value of a Q7 vector. |
||
| 6471 | * @param[in] pSrc points to the input buffer |
||
| 6472 | * @param[in] blockSize length of the input vector |
||
| 6473 | * @param[out] pResult maximum value returned here |
||
| 6474 | * @param[out] pIndex index of maximum value returned here |
||
| 6475 | */ |
||
| 6476 | void arm_max_q7( |
||
| 6477 | q7_t * pSrc, |
||
| 6478 | uint32_t blockSize, |
||
| 6479 | q7_t * pResult, |
||
| 6480 | uint32_t * pIndex); |
||
| 6481 | |||
| 6482 | |||
| 6483 | /** |
||
| 6484 | * @brief Maximum value of a Q15 vector. |
||
| 6485 | * @param[in] pSrc points to the input buffer |
||
| 6486 | * @param[in] blockSize length of the input vector |
||
| 6487 | * @param[out] pResult maximum value returned here |
||
| 6488 | * @param[out] pIndex index of maximum value returned here |
||
| 6489 | */ |
||
| 6490 | void arm_max_q15( |
||
| 6491 | q15_t * pSrc, |
||
| 6492 | uint32_t blockSize, |
||
| 6493 | q15_t * pResult, |
||
| 6494 | uint32_t * pIndex); |
||
| 6495 | |||
| 6496 | |||
| 6497 | /** |
||
| 6498 | * @brief Maximum value of a Q31 vector. |
||
| 6499 | * @param[in] pSrc points to the input buffer |
||
| 6500 | * @param[in] blockSize length of the input vector |
||
| 6501 | * @param[out] pResult maximum value returned here |
||
| 6502 | * @param[out] pIndex index of maximum value returned here |
||
| 6503 | */ |
||
| 6504 | void arm_max_q31( |
||
| 6505 | q31_t * pSrc, |
||
| 6506 | uint32_t blockSize, |
||
| 6507 | q31_t * pResult, |
||
| 6508 | uint32_t * pIndex); |
||
| 6509 | |||
| 6510 | |||
| 6511 | /** |
||
| 6512 | * @brief Maximum value of a floating-point vector. |
||
| 6513 | * @param[in] pSrc points to the input buffer |
||
| 6514 | * @param[in] blockSize length of the input vector |
||
| 6515 | * @param[out] pResult maximum value returned here |
||
| 6516 | * @param[out] pIndex index of maximum value returned here |
||
| 6517 | */ |
||
| 6518 | void arm_max_f32( |
||
| 6519 | float32_t * pSrc, |
||
| 6520 | uint32_t blockSize, |
||
| 6521 | float32_t * pResult, |
||
| 6522 | uint32_t * pIndex); |
||
| 6523 | |||
| 6524 | |||
| 6525 | /** |
||
| 6526 | * @brief Q15 complex-by-complex multiplication |
||
| 6527 | * @param[in] pSrcA points to the first input vector |
||
| 6528 | * @param[in] pSrcB points to the second input vector |
||
| 6529 | * @param[out] pDst points to the output vector |
||
| 6530 | * @param[in] numSamples number of complex samples in each vector |
||
| 6531 | */ |
||
| 6532 | void arm_cmplx_mult_cmplx_q15( |
||
| 6533 | q15_t * pSrcA, |
||
| 6534 | q15_t * pSrcB, |
||
| 6535 | q15_t * pDst, |
||
| 6536 | uint32_t numSamples); |
||
| 6537 | |||
| 6538 | |||
| 6539 | /** |
||
| 6540 | * @brief Q31 complex-by-complex multiplication |
||
| 6541 | * @param[in] pSrcA points to the first input vector |
||
| 6542 | * @param[in] pSrcB points to the second input vector |
||
| 6543 | * @param[out] pDst points to the output vector |
||
| 6544 | * @param[in] numSamples number of complex samples in each vector |
||
| 6545 | */ |
||
| 6546 | void arm_cmplx_mult_cmplx_q31( |
||
| 6547 | q31_t * pSrcA, |
||
| 6548 | q31_t * pSrcB, |
||
| 6549 | q31_t * pDst, |
||
| 6550 | uint32_t numSamples); |
||
| 6551 | |||
| 6552 | |||
| 6553 | /** |
||
| 6554 | * @brief Floating-point complex-by-complex multiplication |
||
| 6555 | * @param[in] pSrcA points to the first input vector |
||
| 6556 | * @param[in] pSrcB points to the second input vector |
||
| 6557 | * @param[out] pDst points to the output vector |
||
| 6558 | * @param[in] numSamples number of complex samples in each vector |
||
| 6559 | */ |
||
| 6560 | void arm_cmplx_mult_cmplx_f32( |
||
| 6561 | float32_t * pSrcA, |
||
| 6562 | float32_t * pSrcB, |
||
| 6563 | float32_t * pDst, |
||
| 6564 | uint32_t numSamples); |
||
| 6565 | |||
| 6566 | |||
| 6567 | /** |
||
| 6568 | * @brief Converts the elements of the floating-point vector to Q31 vector. |
||
| 6569 | * @param[in] pSrc points to the floating-point input vector |
||
| 6570 | * @param[out] pDst points to the Q31 output vector |
||
| 6571 | * @param[in] blockSize length of the input vector |
||
| 6572 | */ |
||
| 6573 | void arm_float_to_q31( |
||
| 6574 | float32_t * pSrc, |
||
| 6575 | q31_t * pDst, |
||
| 6576 | uint32_t blockSize); |
||
| 6577 | |||
| 6578 | |||
| 6579 | /** |
||
| 6580 | * @brief Converts the elements of the floating-point vector to Q15 vector. |
||
| 6581 | * @param[in] pSrc points to the floating-point input vector |
||
| 6582 | * @param[out] pDst points to the Q15 output vector |
||
| 6583 | * @param[in] blockSize length of the input vector |
||
| 6584 | */ |
||
| 6585 | void arm_float_to_q15( |
||
| 6586 | float32_t * pSrc, |
||
| 6587 | q15_t * pDst, |
||
| 6588 | uint32_t blockSize); |
||
| 6589 | |||
| 6590 | |||
| 6591 | /** |
||
| 6592 | * @brief Converts the elements of the floating-point vector to Q7 vector. |
||
| 6593 | * @param[in] pSrc points to the floating-point input vector |
||
| 6594 | * @param[out] pDst points to the Q7 output vector |
||
| 6595 | * @param[in] blockSize length of the input vector |
||
| 6596 | */ |
||
| 6597 | void arm_float_to_q7( |
||
| 6598 | float32_t * pSrc, |
||
| 6599 | q7_t * pDst, |
||
| 6600 | uint32_t blockSize); |
||
| 6601 | |||
| 6602 | |||
| 6603 | /** |
||
| 6604 | * @brief Converts the elements of the Q31 vector to Q15 vector. |
||
| 6605 | * @param[in] pSrc is input pointer |
||
| 6606 | * @param[out] pDst is output pointer |
||
| 6607 | * @param[in] blockSize is the number of samples to process |
||
| 6608 | */ |
||
| 6609 | void arm_q31_to_q15( |
||
| 6610 | q31_t * pSrc, |
||
| 6611 | q15_t * pDst, |
||
| 6612 | uint32_t blockSize); |
||
| 6613 | |||
| 6614 | |||
| 6615 | /** |
||
| 6616 | * @brief Converts the elements of the Q31 vector to Q7 vector. |
||
| 6617 | * @param[in] pSrc is input pointer |
||
| 6618 | * @param[out] pDst is output pointer |
||
| 6619 | * @param[in] blockSize is the number of samples to process |
||
| 6620 | */ |
||
| 6621 | void arm_q31_to_q7( |
||
| 6622 | q31_t * pSrc, |
||
| 6623 | q7_t * pDst, |
||
| 6624 | uint32_t blockSize); |
||
| 6625 | |||
| 6626 | |||
| 6627 | /** |
||
| 6628 | * @brief Converts the elements of the Q15 vector to floating-point vector. |
||
| 6629 | * @param[in] pSrc is input pointer |
||
| 6630 | * @param[out] pDst is output pointer |
||
| 6631 | * @param[in] blockSize is the number of samples to process |
||
| 6632 | */ |
||
| 6633 | void arm_q15_to_float( |
||
| 6634 | q15_t * pSrc, |
||
| 6635 | float32_t * pDst, |
||
| 6636 | uint32_t blockSize); |
||
| 6637 | |||
| 6638 | |||
| 6639 | /** |
||
| 6640 | * @brief Converts the elements of the Q15 vector to Q31 vector. |
||
| 6641 | * @param[in] pSrc is input pointer |
||
| 6642 | * @param[out] pDst is output pointer |
||
| 6643 | * @param[in] blockSize is the number of samples to process |
||
| 6644 | */ |
||
| 6645 | void arm_q15_to_q31( |
||
| 6646 | q15_t * pSrc, |
||
| 6647 | q31_t * pDst, |
||
| 6648 | uint32_t blockSize); |
||
| 6649 | |||
| 6650 | |||
| 6651 | /** |
||
| 6652 | * @brief Converts the elements of the Q15 vector to Q7 vector. |
||
| 6653 | * @param[in] pSrc is input pointer |
||
| 6654 | * @param[out] pDst is output pointer |
||
| 6655 | * @param[in] blockSize is the number of samples to process |
||
| 6656 | */ |
||
| 6657 | void arm_q15_to_q7( |
||
| 6658 | q15_t * pSrc, |
||
| 6659 | q7_t * pDst, |
||
| 6660 | uint32_t blockSize); |
||
| 6661 | |||
| 6662 | |||
| 6663 | /** |
||
| 6664 | * @ingroup groupInterpolation |
||
| 6665 | */ |
||
| 6666 | |||
| 6667 | /** |
||
| 6668 | * @defgroup BilinearInterpolate Bilinear Interpolation |
||
| 6669 | * |
||
| 6670 | * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. |
||
| 6671 | * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process |
||
| 6672 | * determines values between the grid points. |
||
| 6673 | * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. |
||
| 6674 | * Bilinear interpolation is often used in image processing to rescale images. |
||
| 6675 | * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. |
||
| 6676 | * |
||
| 6677 | * <b>Algorithm</b> |
||
| 6678 | * \par |
||
| 6679 | * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. |
||
| 6680 | * For floating-point, the instance structure is defined as: |
||
| 6681 | * <pre> |
||
| 6682 | * typedef struct |
||
| 6683 | * { |
||
| 6684 | * uint16_t numRows; |
||
| 6685 | * uint16_t numCols; |
||
| 6686 | * float32_t *pData; |
||
| 6687 | * } arm_bilinear_interp_instance_f32; |
||
| 6688 | * </pre> |
||
| 6689 | * |
||
| 6690 | * \par |
||
| 6691 | * where <code>numRows</code> specifies the number of rows in the table; |
||
| 6692 | * <code>numCols</code> specifies the number of columns in the table; |
||
| 6693 | * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. |
||
| 6694 | * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. |
||
| 6695 | * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. |
||
| 6696 | * |
||
| 6697 | * \par |
||
| 6698 | * Let <code>(x, y)</code> specify the desired interpolation point. Then define: |
||
| 6699 | * <pre> |
||
| 6700 | * XF = floor(x) |
||
| 6701 | * YF = floor(y) |
||
| 6702 | * </pre> |
||
| 6703 | * \par |
||
| 6704 | * The interpolated output point is computed as: |
||
| 6705 | * <pre> |
||
| 6706 | * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) |
||
| 6707 | * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) |
||
| 6708 | * + f(XF, YF+1) * (1-(x-XF))*(y-YF) |
||
| 6709 | * + f(XF+1, YF+1) * (x-XF)*(y-YF) |
||
| 6710 | * </pre> |
||
| 6711 | * Note that the coordinates (x, y) contain integer and fractional components. |
||
| 6712 | * The integer components specify which portion of the table to use while the |
||
| 6713 | * fractional components control the interpolation processor. |
||
| 6714 | * |
||
| 6715 | * \par |
||
| 6716 | * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. |
||
| 6717 | */ |
||
| 6718 | |||
| 6719 | /** |
||
| 6720 | * @addtogroup BilinearInterpolate |
||
| 6721 | * @{ |
||
| 6722 | */ |
||
| 6723 | |||
| 6724 | |||
| 6725 | /** |
||
| 6726 | * |
||
| 6727 | * @brief Floating-point bilinear interpolation. |
||
| 6728 | * @param[in,out] S points to an instance of the interpolation structure. |
||
| 6729 | * @param[in] X interpolation coordinate. |
||
| 6730 | * @param[in] Y interpolation coordinate. |
||
| 6731 | * @return out interpolated value. |
||
| 6732 | */ |
||
| 6733 | CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32( |
||
| 6734 | const arm_bilinear_interp_instance_f32 * S, |
||
| 6735 | float32_t X, |
||
| 6736 | float32_t Y) |
||
| 6737 | { |
||
| 6738 | float32_t out; |
||
| 6739 | float32_t f00, f01, f10, f11; |
||
| 6740 | float32_t *pData = S->pData; |
||
| 6741 | int32_t xIndex, yIndex, index; |
||
| 6742 | float32_t xdiff, ydiff; |
||
| 6743 | float32_t b1, b2, b3, b4; |
||
| 6744 | |||
| 6745 | xIndex = (int32_t) X; |
||
| 6746 | yIndex = (int32_t) Y; |
||
| 6747 | |||
| 6748 | /* Care taken for table outside boundary */ |
||
| 6749 | /* Returns zero output when values are outside table boundary */ |
||
| 6750 | if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) |
||
| 6751 | { |
||
| 6752 | return (0); |
||
| 6753 | } |
||
| 6754 | |||
| 6755 | /* Calculation of index for two nearest points in X-direction */ |
||
| 6756 | index = (xIndex - 1) + (yIndex - 1) * S->numCols; |
||
| 6757 | |||
| 6758 | |||
| 6759 | /* Read two nearest points in X-direction */ |
||
| 6760 | f00 = pData[index]; |
||
| 6761 | f01 = pData[index + 1]; |
||
| 6762 | |||
| 6763 | /* Calculation of index for two nearest points in Y-direction */ |
||
| 6764 | index = (xIndex - 1) + (yIndex) * S->numCols; |
||
| 6765 | |||
| 6766 | |||
| 6767 | /* Read two nearest points in Y-direction */ |
||
| 6768 | f10 = pData[index]; |
||
| 6769 | f11 = pData[index + 1]; |
||
| 6770 | |||
| 6771 | /* Calculation of intermediate values */ |
||
| 6772 | b1 = f00; |
||
| 6773 | b2 = f01 - f00; |
||
| 6774 | b3 = f10 - f00; |
||
| 6775 | b4 = f00 - f01 - f10 + f11; |
||
| 6776 | |||
| 6777 | /* Calculation of fractional part in X */ |
||
| 6778 | xdiff = X - xIndex; |
||
| 6779 | |||
| 6780 | /* Calculation of fractional part in Y */ |
||
| 6781 | ydiff = Y - yIndex; |
||
| 6782 | |||
| 6783 | /* Calculation of bi-linear interpolated output */ |
||
| 6784 | out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; |
||
| 6785 | |||
| 6786 | /* return to application */ |
||
| 6787 | return (out); |
||
| 6788 | } |
||
| 6789 | |||
| 6790 | |||
| 6791 | /** |
||
| 6792 | * |
||
| 6793 | * @brief Q31 bilinear interpolation. |
||
| 6794 | * @param[in,out] S points to an instance of the interpolation structure. |
||
| 6795 | * @param[in] X interpolation coordinate in 12.20 format. |
||
| 6796 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
| 6797 | * @return out interpolated value. |
||
| 6798 | */ |
||
| 6799 | CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31( |
||
| 6800 | arm_bilinear_interp_instance_q31 * S, |
||
| 6801 | q31_t X, |
||
| 6802 | q31_t Y) |
||
| 6803 | { |
||
| 6804 | q31_t out; /* Temporary output */ |
||
| 6805 | q31_t acc = 0; /* output */ |
||
| 6806 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
| 6807 | q31_t x1, x2, y1, y2; /* Nearest output values */ |
||
| 6808 | int32_t rI, cI; /* Row and column indices */ |
||
| 6809 | q31_t *pYData = S->pData; /* pointer to output table values */ |
||
| 6810 | uint32_t nCols = S->numCols; /* num of rows */ |
||
| 6811 | |||
| 6812 | /* Input is in 12.20 format */ |
||
| 6813 | /* 12 bits for the table index */ |
||
| 6814 | /* Index value calculation */ |
||
| 6815 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
||
| 6816 | |||
| 6817 | /* Input is in 12.20 format */ |
||
| 6818 | /* 12 bits for the table index */ |
||
| 6819 | /* Index value calculation */ |
||
| 6820 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
||
| 6821 | |||
| 6822 | /* Care taken for table outside boundary */ |
||
| 6823 | /* Returns zero output when values are outside table boundary */ |
||
| 6824 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
| 6825 | { |
||
| 6826 | return (0); |
||
| 6827 | } |
||
| 6828 | |||
| 6829 | /* 20 bits for the fractional part */ |
||
| 6830 | /* shift left xfract by 11 to keep 1.31 format */ |
||
| 6831 | xfract = (X & 0x000FFFFF) << 11U; |
||
| 6832 | |||
| 6833 | /* Read two nearest output values from the index */ |
||
| 6834 | x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; |
||
| 6835 | x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; |
||
| 6836 | |||
| 6837 | /* 20 bits for the fractional part */ |
||
| 6838 | /* shift left yfract by 11 to keep 1.31 format */ |
||
| 6839 | yfract = (Y & 0x000FFFFF) << 11U; |
||
| 6840 | |||
| 6841 | /* Read two nearest output values from the index */ |
||
| 6842 | y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; |
||
| 6843 | y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; |
||
| 6844 | |||
| 6845 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ |
||
| 6846 | out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); |
||
| 6847 | acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); |
||
| 6848 | |||
| 6849 | /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ |
||
| 6850 | out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); |
||
| 6851 | acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); |
||
| 6852 | |||
| 6853 | /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
| 6854 | out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); |
||
| 6855 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
| 6856 | |||
| 6857 | /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
| 6858 | out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); |
||
| 6859 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
| 6860 | |||
| 6861 | /* Convert acc to 1.31(q31) format */ |
||
| 6862 | return ((q31_t)(acc << 2)); |
||
| 6863 | } |
||
| 6864 | |||
| 6865 | |||
| 6866 | /** |
||
| 6867 | * @brief Q15 bilinear interpolation. |
||
| 6868 | * @param[in,out] S points to an instance of the interpolation structure. |
||
| 6869 | * @param[in] X interpolation coordinate in 12.20 format. |
||
| 6870 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
| 6871 | * @return out interpolated value. |
||
| 6872 | */ |
||
| 6873 | CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15( |
||
| 6874 | arm_bilinear_interp_instance_q15 * S, |
||
| 6875 | q31_t X, |
||
| 6876 | q31_t Y) |
||
| 6877 | { |
||
| 6878 | q63_t acc = 0; /* output */ |
||
| 6879 | q31_t out; /* Temporary output */ |
||
| 6880 | q15_t x1, x2, y1, y2; /* Nearest output values */ |
||
| 6881 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
| 6882 | int32_t rI, cI; /* Row and column indices */ |
||
| 6883 | q15_t *pYData = S->pData; /* pointer to output table values */ |
||
| 6884 | uint32_t nCols = S->numCols; /* num of rows */ |
||
| 6885 | |||
| 6886 | /* Input is in 12.20 format */ |
||
| 6887 | /* 12 bits for the table index */ |
||
| 6888 | /* Index value calculation */ |
||
| 6889 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
||
| 6890 | |||
| 6891 | /* Input is in 12.20 format */ |
||
| 6892 | /* 12 bits for the table index */ |
||
| 6893 | /* Index value calculation */ |
||
| 6894 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
||
| 6895 | |||
| 6896 | /* Care taken for table outside boundary */ |
||
| 6897 | /* Returns zero output when values are outside table boundary */ |
||
| 6898 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
| 6899 | { |
||
| 6900 | return (0); |
||
| 6901 | } |
||
| 6902 | |||
| 6903 | /* 20 bits for the fractional part */ |
||
| 6904 | /* xfract should be in 12.20 format */ |
||
| 6905 | xfract = (X & 0x000FFFFF); |
||
| 6906 | |||
| 6907 | /* Read two nearest output values from the index */ |
||
| 6908 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
||
| 6909 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
||
| 6910 | |||
| 6911 | /* 20 bits for the fractional part */ |
||
| 6912 | /* yfract should be in 12.20 format */ |
||
| 6913 | yfract = (Y & 0x000FFFFF); |
||
| 6914 | |||
| 6915 | /* Read two nearest output values from the index */ |
||
| 6916 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
||
| 6917 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
||
| 6918 | |||
| 6919 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ |
||
| 6920 | |||
| 6921 | /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ |
||
| 6922 | /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ |
||
| 6923 | out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4U); |
||
| 6924 | acc = ((q63_t) out * (0xFFFFF - yfract)); |
||
| 6925 | |||
| 6926 | /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ |
||
| 6927 | out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4U); |
||
| 6928 | acc += ((q63_t) out * (xfract)); |
||
| 6929 | |||
| 6930 | /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ |
||
| 6931 | out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4U); |
||
| 6932 | acc += ((q63_t) out * (yfract)); |
||
| 6933 | |||
| 6934 | /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ |
||
| 6935 | out = (q31_t) (((q63_t) y2 * (xfract)) >> 4U); |
||
| 6936 | acc += ((q63_t) out * (yfract)); |
||
| 6937 | |||
| 6938 | /* acc is in 13.51 format and down shift acc by 36 times */ |
||
| 6939 | /* Convert out to 1.15 format */ |
||
| 6940 | return ((q15_t)(acc >> 36)); |
||
| 6941 | } |
||
| 6942 | |||
| 6943 | |||
| 6944 | /** |
||
| 6945 | * @brief Q7 bilinear interpolation. |
||
| 6946 | * @param[in,out] S points to an instance of the interpolation structure. |
||
| 6947 | * @param[in] X interpolation coordinate in 12.20 format. |
||
| 6948 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
| 6949 | * @return out interpolated value. |
||
| 6950 | */ |
||
| 6951 | CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7( |
||
| 6952 | arm_bilinear_interp_instance_q7 * S, |
||
| 6953 | q31_t X, |
||
| 6954 | q31_t Y) |
||
| 6955 | { |
||
| 6956 | q63_t acc = 0; /* output */ |
||
| 6957 | q31_t out; /* Temporary output */ |
||
| 6958 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
| 6959 | q7_t x1, x2, y1, y2; /* Nearest output values */ |
||
| 6960 | int32_t rI, cI; /* Row and column indices */ |
||
| 6961 | q7_t *pYData = S->pData; /* pointer to output table values */ |
||
| 6962 | uint32_t nCols = S->numCols; /* num of rows */ |
||
| 6963 | |||
| 6964 | /* Input is in 12.20 format */ |
||
| 6965 | /* 12 bits for the table index */ |
||
| 6966 | /* Index value calculation */ |
||
| 6967 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
||
| 6968 | |||
| 6969 | /* Input is in 12.20 format */ |
||
| 6970 | /* 12 bits for the table index */ |
||
| 6971 | /* Index value calculation */ |
||
| 6972 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
||
| 6973 | |||
| 6974 | /* Care taken for table outside boundary */ |
||
| 6975 | /* Returns zero output when values are outside table boundary */ |
||
| 6976 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
| 6977 | { |
||
| 6978 | return (0); |
||
| 6979 | } |
||
| 6980 | |||
| 6981 | /* 20 bits for the fractional part */ |
||
| 6982 | /* xfract should be in 12.20 format */ |
||
| 6983 | xfract = (X & (q31_t)0x000FFFFF); |
||
| 6984 | |||
| 6985 | /* Read two nearest output values from the index */ |
||
| 6986 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
||
| 6987 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
||
| 6988 | |||
| 6989 | /* 20 bits for the fractional part */ |
||
| 6990 | /* yfract should be in 12.20 format */ |
||
| 6991 | yfract = (Y & (q31_t)0x000FFFFF); |
||
| 6992 | |||
| 6993 | /* Read two nearest output values from the index */ |
||
| 6994 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
||
| 6995 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
||
| 6996 | |||
| 6997 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ |
||
| 6998 | out = ((x1 * (0xFFFFF - xfract))); |
||
| 6999 | acc = (((q63_t) out * (0xFFFFF - yfract))); |
||
| 7000 | |||
| 7001 | /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ |
||
| 7002 | out = ((x2 * (0xFFFFF - yfract))); |
||
| 7003 | acc += (((q63_t) out * (xfract))); |
||
| 7004 | |||
| 7005 | /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ |
||
| 7006 | out = ((y1 * (0xFFFFF - xfract))); |
||
| 7007 | acc += (((q63_t) out * (yfract))); |
||
| 7008 | |||
| 7009 | /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ |
||
| 7010 | out = ((y2 * (yfract))); |
||
| 7011 | acc += (((q63_t) out * (xfract))); |
||
| 7012 | |||
| 7013 | /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ |
||
| 7014 | return ((q7_t)(acc >> 40)); |
||
| 7015 | } |
||
| 7016 | |||
| 7017 | /** |
||
| 7018 | * @} end of BilinearInterpolate group |
||
| 7019 | */ |
||
| 7020 | |||
| 7021 | |||
| 7022 | /* SMMLAR */ |
||
| 7023 | #define multAcc_32x32_keep32_R(a, x, y) \ |
||
| 7024 | a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
| 7025 | |||
| 7026 | /* SMMLSR */ |
||
| 7027 | #define multSub_32x32_keep32_R(a, x, y) \ |
||
| 7028 | a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
| 7029 | |||
| 7030 | /* SMMULR */ |
||
| 7031 | #define mult_32x32_keep32_R(a, x, y) \ |
||
| 7032 | a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) |
||
| 7033 | |||
| 7034 | /* SMMLA */ |
||
| 7035 | #define multAcc_32x32_keep32(a, x, y) \ |
||
| 7036 | a += (q31_t) (((q63_t) x * y) >> 32) |
||
| 7037 | |||
| 7038 | /* SMMLS */ |
||
| 7039 | #define multSub_32x32_keep32(a, x, y) \ |
||
| 7040 | a -= (q31_t) (((q63_t) x * y) >> 32) |
||
| 7041 | |||
| 7042 | /* SMMUL */ |
||
| 7043 | #define mult_32x32_keep32(a, x, y) \ |
||
| 7044 | a = (q31_t) (((q63_t) x * y ) >> 32) |
||
| 7045 | |||
| 7046 | |||
| 7047 | #if defined ( __CC_ARM ) |
||
| 7048 | /* Enter low optimization region - place directly above function definition */ |
||
| 7049 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
||
| 7050 | #define LOW_OPTIMIZATION_ENTER \ |
||
| 7051 | _Pragma ("push") \ |
||
| 7052 | _Pragma ("O1") |
||
| 7053 | #else |
||
| 7054 | #define LOW_OPTIMIZATION_ENTER |
||
| 7055 | #endif |
||
| 7056 | |||
| 7057 | /* Exit low optimization region - place directly after end of function definition */ |
||
| 7058 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) |
||
| 7059 | #define LOW_OPTIMIZATION_EXIT \ |
||
| 7060 | _Pragma ("pop") |
||
| 7061 | #else |
||
| 7062 | #define LOW_OPTIMIZATION_EXIT |
||
| 7063 | #endif |
||
| 7064 | |||
| 7065 | /* Enter low optimization region - place directly above function definition */ |
||
| 7066 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
| 7067 | |||
| 7068 | /* Exit low optimization region - place directly after end of function definition */ |
||
| 7069 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
| 7070 | |||
| 7071 | #elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
| 7072 | #define LOW_OPTIMIZATION_ENTER |
||
| 7073 | #define LOW_OPTIMIZATION_EXIT |
||
| 7074 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
| 7075 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
| 7076 | |||
| 7077 | #elif defined ( __GNUC__ ) |
||
| 7078 | #define LOW_OPTIMIZATION_ENTER \ |
||
| 7079 | __attribute__(( optimize("-O1") )) |
||
| 7080 | #define LOW_OPTIMIZATION_EXIT |
||
| 7081 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
| 7082 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
| 7083 | |||
| 7084 | #elif defined ( __ICCARM__ ) |
||
| 7085 | /* Enter low optimization region - place directly above function definition */ |
||
| 7086 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) |
||
| 7087 | #define LOW_OPTIMIZATION_ENTER \ |
||
| 7088 | _Pragma ("optimize=low") |
||
| 7089 | #else |
||
| 7090 | #define LOW_OPTIMIZATION_ENTER |
||
| 7091 | #endif |
||
| 7092 | |||
| 7093 | /* Exit low optimization region - place directly after end of function definition */ |
||
| 7094 | #define LOW_OPTIMIZATION_EXIT |
||
| 7095 | |||
| 7096 | /* Enter low optimization region - place directly above function definition */ |
||
| 7097 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) |
||
| 7098 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ |
||
| 7099 | _Pragma ("optimize=low") |
||
| 7100 | #else |
||
| 7101 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
| 7102 | #endif |
||
| 7103 | |||
| 7104 | /* Exit low optimization region - place directly after end of function definition */ |
||
| 7105 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
| 7106 | |||
| 7107 | #elif defined ( __TI_ARM__ ) |
||
| 7108 | #define LOW_OPTIMIZATION_ENTER |
||
| 7109 | #define LOW_OPTIMIZATION_EXIT |
||
| 7110 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
| 7111 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
| 7112 | |||
| 7113 | #elif defined ( __CSMC__ ) |
||
| 7114 | #define LOW_OPTIMIZATION_ENTER |
||
| 7115 | #define LOW_OPTIMIZATION_EXIT |
||
| 7116 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
| 7117 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
| 7118 | |||
| 7119 | #elif defined ( __TASKING__ ) |
||
| 7120 | #define LOW_OPTIMIZATION_ENTER |
||
| 7121 | #define LOW_OPTIMIZATION_EXIT |
||
| 7122 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
| 7123 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
| 7124 | |||
| 7125 | #endif |
||
| 7126 | |||
| 7127 | |||
| 7128 | #ifdef __cplusplus |
||
| 7129 | } |
||
| 7130 | #endif |
||
| 7131 | |||
| 7132 | /* Compiler specific diagnostic adjustment */ |
||
| 7133 | #if defined ( __CC_ARM ) |
||
| 7134 | |||
| 7135 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
| 7136 | |||
| 7137 | #elif defined ( __GNUC__ ) |
||
| 7138 | #pragma GCC diagnostic pop |
||
| 7139 | |||
| 7140 | #elif defined ( __ICCARM__ ) |
||
| 7141 | |||
| 7142 | #elif defined ( __TI_ARM__ ) |
||
| 7143 | |||
| 7144 | #elif defined ( __CSMC__ ) |
||
| 7145 | |||
| 7146 | #elif defined ( __TASKING__ ) |
||
| 7147 | |||
| 7148 | #else |
||
| 7149 | #error Unknown compiler |
||
| 7150 | #endif |
||
| 7151 | |||
| 7152 | #endif /* _ARM_MATH_H */ |
||
| 7153 | |||
| 7154 | /** |
||
| 7155 | * |
||
| 7156 | * End of file. |
||
| 7157 | */ |