Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
30 | mjames | 1 | /** |
2 | ****************************************************************************** |
||
3 | * @file stm32l1xx_hal_rcc.c |
||
4 | * @author MCD Application Team |
||
5 | * @version V1.2.0 |
||
6 | * @date 01-July-2016 |
||
7 | * @brief RCC HAL module driver. |
||
8 | * This file provides firmware functions to manage the following |
||
9 | * functionalities of the Reset and Clock Control (RCC) peripheral: |
||
10 | * + Initialization and de-initialization functions |
||
11 | * + Peripheral Control functions |
||
12 | * |
||
13 | @verbatim |
||
14 | ============================================================================== |
||
15 | ##### RCC specific features ##### |
||
16 | ============================================================================== |
||
17 | [..] |
||
18 | After reset the device is running from multispeed internal oscillator clock |
||
19 | (MSI 2.097MHz) with Flash 0 wait state and Flash prefetch buffer is disabled, |
||
20 | and all peripherals are off except internal SRAM, Flash and JTAG. |
||
21 | (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses; |
||
22 | all peripherals mapped on these buses are running at MSI speed. |
||
23 | (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
||
24 | (+) All GPIOs are in input floating state, except the JTAG pins which |
||
25 | are assigned to be used for debug purpose. |
||
26 | [..] Once the device started from reset, the user application has to: |
||
27 | (+) Configure the clock source to be used to drive the System clock |
||
28 | (if the application needs higher frequency/performance) |
||
29 | (+) Configure the System clock frequency and Flash settings |
||
30 | (+) Configure the AHB and APB buses prescalers |
||
31 | (+) Enable the clock for the peripheral(s) to be used |
||
32 | (+) Configure the clock source(s) for peripherals whose clocks are not |
||
33 | derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG) |
||
34 | (*) SDIO only for STM32L1xxxD devices |
||
35 | |||
36 | ##### RCC Limitations ##### |
||
37 | ============================================================================== |
||
38 | [..] |
||
39 | A delay between an RCC peripheral clock enable and the effective peripheral |
||
40 | enabling should be taken into account in order to manage the peripheral read/write |
||
41 | from/to registers. |
||
42 | (+) This delay depends on the peripheral mapping. |
||
43 | (++) AHB & APB peripherals, 1 dummy read is necessary |
||
44 | |||
45 | [..] |
||
46 | Workarounds: |
||
47 | (#) For AHB & APB peripherals, a dummy read to the peripheral register has been |
||
48 | inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
||
49 | |||
50 | @endverbatim |
||
51 | ****************************************************************************** |
||
52 | * @attention |
||
53 | * |
||
54 | * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2> |
||
55 | * |
||
56 | * Redistribution and use in source and binary forms, with or without modification, |
||
57 | * are permitted provided that the following conditions are met: |
||
58 | * 1. Redistributions of source code must retain the above copyright notice, |
||
59 | * this list of conditions and the following disclaimer. |
||
60 | * 2. Redistributions in binary form must reproduce the above copyright notice, |
||
61 | * this list of conditions and the following disclaimer in the documentation |
||
62 | * and/or other materials provided with the distribution. |
||
63 | * 3. Neither the name of STMicroelectronics nor the names of its contributors |
||
64 | * may be used to endorse or promote products derived from this software |
||
65 | * without specific prior written permission. |
||
66 | * |
||
67 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
68 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
69 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
||
70 | * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
||
71 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||
72 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
||
73 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
74 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
||
75 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||
76 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
77 | * |
||
78 | ****************************************************************************** |
||
79 | */ |
||
80 | |||
81 | /* Includes ------------------------------------------------------------------*/ |
||
82 | #include "stm32l1xx_hal.h" |
||
83 | |||
84 | /** @addtogroup STM32L1xx_HAL_Driver |
||
85 | * @{ |
||
86 | */ |
||
87 | |||
88 | /** @defgroup RCC RCC |
||
89 | * @brief RCC HAL module driver |
||
90 | * @{ |
||
91 | */ |
||
92 | |||
93 | #ifdef HAL_RCC_MODULE_ENABLED |
||
94 | |||
95 | /* Private typedef -----------------------------------------------------------*/ |
||
96 | /* Private define ------------------------------------------------------------*/ |
||
97 | /** @defgroup RCC_Private_Constants RCC Private Constants |
||
98 | * @{ |
||
99 | */ |
||
100 | /* Bits position in in the CFGR register */ |
||
101 | #define RCC_CFGR_PLLMUL_BITNUMBER POSITION_VAL(RCC_CFGR_PLLMUL) |
||
102 | #define RCC_CFGR_PLLDIV_BITNUMBER POSITION_VAL(RCC_CFGR_PLLDIV) |
||
103 | #define RCC_CFGR_HPRE_BITNUMBER POSITION_VAL(RCC_CFGR_HPRE) |
||
104 | #define RCC_CFGR_PPRE1_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE1) |
||
105 | #define RCC_CFGR_PPRE2_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE2) |
||
106 | /* Bits position in in the ICSCR register */ |
||
107 | #define RCC_ICSCR_MSIRANGE_BITNUMBER POSITION_VAL(RCC_ICSCR_MSIRANGE) |
||
108 | #define RCC_ICSCR_MSITRIM_BITNUMBER POSITION_VAL(RCC_ICSCR_MSITRIM) |
||
109 | /** |
||
110 | * @} |
||
111 | */ |
||
112 | /* Private macro -------------------------------------------------------------*/ |
||
113 | /** @defgroup RCC_Private_Macros RCC Private Macros |
||
114 | * @{ |
||
115 | */ |
||
116 | |||
117 | #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
||
118 | #define MCO1_GPIO_PORT GPIOA |
||
119 | #define MCO1_PIN GPIO_PIN_8 |
||
120 | |||
121 | /** |
||
122 | * @} |
||
123 | */ |
||
124 | |||
125 | /* Private variables ---------------------------------------------------------*/ |
||
126 | /** @defgroup RCC_Private_Variables RCC Private Variables |
||
127 | * @{ |
||
128 | */ |
||
129 | extern const uint8_t PLLMulTable[]; /* Defined in CMSIS (system_stm32l0xx.c)*/ |
||
130 | /** |
||
131 | * @} |
||
132 | */ |
||
133 | |||
134 | /* Private function prototypes -----------------------------------------------*/ |
||
135 | /** @defgroup RCC_Private_Functions RCC Private Functions |
||
136 | * @{ |
||
137 | */ |
||
138 | static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange); |
||
139 | /** |
||
140 | * @} |
||
141 | */ |
||
142 | |||
143 | /* Exported functions ---------------------------------------------------------*/ |
||
144 | |||
145 | /** @defgroup RCC_Exported_Functions RCC Exported Functions |
||
146 | * @{ |
||
147 | */ |
||
148 | |||
149 | /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
||
150 | * @brief Initialization and Configuration functions |
||
151 | * |
||
152 | @verbatim |
||
153 | =============================================================================== |
||
154 | ##### Initialization and de-initialization functions ##### |
||
155 | =============================================================================== |
||
156 | [..] |
||
157 | This section provides functions allowing to configure the internal/external oscillators |
||
158 | (MSI, HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1 |
||
159 | and APB2). |
||
160 | |||
161 | [..] Internal/external clock and PLL configuration |
||
162 | (#) MSI (Multispeed internal), Seven frequency ranges are available: 65.536 kHz, |
||
163 | 131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz, 2.097 MHz (default value) and 4.194 MHz. |
||
164 | |||
165 | (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through |
||
166 | the PLL as System clock source. |
||
167 | (#) LSI (low-speed internal), ~37 KHz low consumption RC used as IWDG and/or RTC |
||
168 | clock source. |
||
169 | |||
170 | (#) HSE (high-speed external), 1 to 24 MHz crystal oscillator used directly or |
||
171 | through the PLL as System clock source. Can be used also as RTC clock source. |
||
172 | |||
173 | (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
||
174 | |||
175 | (#) PLL (clocked by HSI or HSE), featuring different output clocks: |
||
176 | (++) The first output is used to generate the high speed system clock (up to 32 MHz) |
||
177 | (++) The second output is used to generate the clock for the USB OTG FS (48 MHz) |
||
178 | |||
179 | (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() |
||
180 | and if a HSE clock failure occurs(HSE used directly or through PLL as System |
||
181 | clock source), the System clocks automatically switched to MSI and an interrupt |
||
182 | is generated if enabled. The interrupt is linked to the Cortex-M3 NMI |
||
183 | (Non-Maskable Interrupt) exception vector. |
||
184 | |||
185 | (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI, LSI, MSI, LSE, |
||
186 | HSE or PLL clock (through a configurable prescaler) on PA8 pin. |
||
187 | |||
188 | [..] System, AHB and APB buses clocks configuration |
||
189 | (#) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI, |
||
190 | HSE and PLL. |
||
191 | The AHB clock (HCLK) is derived from System clock through configurable |
||
192 | prescaler and used to clock the CPU, memory and peripherals mapped |
||
193 | on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
||
194 | from AHB clock through configurable prescalers and used to clock |
||
195 | the peripherals mapped on these buses. You can use |
||
196 | "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
||
197 | |||
198 | -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
||
199 | (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock |
||
200 | divided by 2 to 16. You have to use @ref __HAL_RCC_RTC_CONFIG() and @ref __HAL_RCC_RTC_ENABLE() |
||
201 | macros to configure this clock. |
||
202 | (+@) LCD: LCD clock can be derived either from the LSI, LSE or HSE clock |
||
203 | divided by 2 to 16. You have to use @ref __HAL_RCC_LCD_CONFIG() |
||
204 | macros to configure this clock. |
||
205 | (+@) USB OTG FS: USB OTG FS require a frequency equal to 48 MHz |
||
206 | to work correctly. This clock is derived of the main PLL through PLL Multiplier. |
||
207 | |||
208 | (+@) IWDG clock which is always the LSI clock. |
||
209 | |||
210 | (#) The maximum frequency of the SYSCLK and HCLK is 32 MHz, PCLK2 32 MHz |
||
211 | and PCLK1 32 MHz. Depending on the device voltage range, the maximum |
||
212 | frequency should be adapted accordingly. |
||
213 | @endverbatim |
||
214 | * @{ |
||
215 | */ |
||
216 | |||
217 | /* |
||
218 | Additional consideration on the HCLK based on Latency settings: |
||
219 | +----------------------------------------------------------------------+ |
||
220 | | Latency | HCLK clock frequency (MHz) | |
||
221 | | |------------------------------------------------------| |
||
222 | | | voltage range 1 | voltage range 2 | voltage range 3 | |
||
223 | | | 1.8 V | 1.5 V | 1.2 V | |
||
224 | |---------------|------------------|-----------------|-----------------| |
||
225 | |0WS(1CPU cycle)| 0 < HCLK <= 16 | 0 < HCLK <= 8 | 0 < HCLK <= 2 | |
||
226 | |---------------|------------------|-----------------|-----------------| |
||
227 | |1WS(2CPU cycle)| 16 < HCLK <= 32 | 8 < HCLK <= 16 | 2 < HCLK <= 4 | |
||
228 | +----------------------------------------------------------------------+ |
||
229 | |||
230 | The following table gives the different clock source frequencies depending on the product |
||
231 | voltage range: |
||
232 | +------------------------------------------------------------------------------------------+ |
||
233 | | Product voltage | Clock frequency | |
||
234 | | |------------------|-----------------------------|-----------------------| |
||
235 | | range | MSI | HSI | HSE | PLL | |
||
236 | |-----------------|---------|--------|-----------------------------|-----------------------| |
||
237 | | Range 1 (1.8 V) | 4.2 MHz | 16 MHz | HSE 32 MHz (external clock) | 32 MHz | |
||
238 | | | | | or 24 MHz (crystal) | (PLLVCO max = 96 MHz) | |
||
239 | |-----------------|---------|--------|-----------------------------|-----------------------| |
||
240 | | Range 2 (1.5 V) | 4.2 MHz | 16 MHz | 16 MHz | 16 MHz | |
||
241 | | | | | | (PLLVCO max = 48 MHz) | |
||
242 | |-----------------|---------|--------|-----------------------------|-----------------------| |
||
243 | | Range 3 (1.2 V) | 4.2 MHz | NA | 8 MHz | 4 MHz | |
||
244 | | | | | | (PLLVCO max = 24 MHz) | |
||
245 | +------------------------------------------------------------------------------------------+ |
||
246 | */ |
||
247 | |||
248 | /** |
||
249 | * @brief Resets the RCC clock configuration to the default reset state. |
||
250 | * @note The default reset state of the clock configuration is given below: |
||
251 | * - MSI ON and used as system clock source |
||
252 | * - HSI, HSE and PLL OFF |
||
253 | * - AHB, APB1 and APB2 prescaler set to 1. |
||
254 | * - CSS and MCO1 OFF |
||
255 | * - All interrupts disabled |
||
256 | * @note This function does not modify the configuration of the |
||
257 | * - Peripheral clocks |
||
258 | * - LSI, LSE and RTC clocks |
||
259 | * @retval None |
||
260 | */ |
||
261 | void HAL_RCC_DeInit(void) |
||
262 | { |
||
263 | /* Set MSION bit */ |
||
264 | SET_BIT(RCC->CR, RCC_CR_MSION); |
||
265 | |||
266 | /* Switch SYSCLK to MSI*/ |
||
267 | CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW); |
||
268 | |||
269 | /* Reset HSION, HSEON, CSSON, HSEBYP & PLLON bits */ |
||
270 | CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON | RCC_CR_HSEBYP); |
||
271 | /* Reset CFGR register */ |
||
272 | CLEAR_REG(RCC->CFGR); |
||
273 | |||
274 | /* Set MSIClockRange & MSITRIM[4:0] bits to the reset value */ |
||
275 | MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_MSIRANGE | RCC_ICSCR_MSITRIM), (((uint32_t)0 << RCC_ICSCR_MSITRIM_BITNUMBER) | RCC_ICSCR_MSIRANGE_5)); |
||
276 | |||
277 | /* Set HSITRIM bits to the reset value */ |
||
278 | MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, ((uint32_t)0x10 << POSITION_VAL(RCC_ICSCR_HSITRIM))); |
||
279 | |||
280 | /* Disable all interrupts */ |
||
281 | CLEAR_REG(RCC->CIR); |
||
282 | |||
283 | /* Update the SystemCoreClock global variable */ |
||
284 | SystemCoreClock = MSI_VALUE; |
||
285 | } |
||
286 | |||
287 | /** |
||
288 | * @brief Initializes the RCC Oscillators according to the specified parameters in the |
||
289 | * RCC_OscInitTypeDef. |
||
290 | * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
||
291 | * contains the configuration information for the RCC Oscillators. |
||
292 | * @note The PLL is not disabled when used as system clock. |
||
293 | * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
||
294 | * supported by this macro. User should request a transition to LSE Off |
||
295 | * first and then LSE On or LSE Bypass. |
||
296 | * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
||
297 | * supported by this macro. User should request a transition to HSE Off |
||
298 | * first and then HSE On or HSE Bypass. |
||
299 | * @retval HAL status |
||
300 | */ |
||
301 | HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
||
302 | { |
||
303 | uint32_t tickstart = 0U; |
||
304 | |||
305 | /* Check the parameters */ |
||
306 | assert_param(RCC_OscInitStruct != NULL); |
||
307 | assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
||
308 | |||
309 | /*------------------------------- HSE Configuration ------------------------*/ |
||
310 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
||
311 | { |
||
312 | /* Check the parameters */ |
||
313 | assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
||
314 | |||
315 | /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
||
316 | if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) |
||
317 | || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) |
||
318 | { |
||
319 | if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
||
320 | { |
||
321 | return HAL_ERROR; |
||
322 | } |
||
323 | } |
||
324 | else |
||
325 | { |
||
326 | /* Set the new HSE configuration ---------------------------------------*/ |
||
327 | __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
||
328 | |||
329 | |||
330 | /* Check the HSE State */ |
||
331 | if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
||
332 | { |
||
333 | /* Get Start Tick */ |
||
334 | tickstart = HAL_GetTick(); |
||
335 | |||
336 | /* Wait till HSE is ready */ |
||
337 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
||
338 | { |
||
339 | if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
||
340 | { |
||
341 | return HAL_TIMEOUT; |
||
342 | } |
||
343 | } |
||
344 | } |
||
345 | else |
||
346 | { |
||
347 | /* Get Start Tick */ |
||
348 | tickstart = HAL_GetTick(); |
||
349 | |||
350 | /* Wait till HSE is disabled */ |
||
351 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
||
352 | { |
||
353 | if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
||
354 | { |
||
355 | return HAL_TIMEOUT; |
||
356 | } |
||
357 | } |
||
358 | } |
||
359 | } |
||
360 | } |
||
361 | /*----------------------------- HSI Configuration --------------------------*/ |
||
362 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
||
363 | { |
||
364 | /* Check the parameters */ |
||
365 | assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
||
366 | assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
||
367 | |||
368 | /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
||
369 | if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) |
||
370 | || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI))) |
||
371 | { |
||
372 | /* When HSI is used as system clock it will not disabled */ |
||
373 | if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) |
||
374 | { |
||
375 | return HAL_ERROR; |
||
376 | } |
||
377 | /* Otherwise, just the calibration is allowed */ |
||
378 | else |
||
379 | { |
||
380 | /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
||
381 | __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
||
382 | } |
||
383 | } |
||
384 | else |
||
385 | { |
||
386 | /* Check the HSI State */ |
||
387 | if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
||
388 | { |
||
389 | /* Enable the Internal High Speed oscillator (HSI). */ |
||
390 | __HAL_RCC_HSI_ENABLE(); |
||
391 | |||
392 | /* Get Start Tick */ |
||
393 | tickstart = HAL_GetTick(); |
||
394 | |||
395 | /* Wait till HSI is ready */ |
||
396 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
||
397 | { |
||
398 | if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
||
399 | { |
||
400 | return HAL_TIMEOUT; |
||
401 | } |
||
402 | } |
||
403 | |||
404 | /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
||
405 | __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
||
406 | } |
||
407 | else |
||
408 | { |
||
409 | /* Disable the Internal High Speed oscillator (HSI). */ |
||
410 | __HAL_RCC_HSI_DISABLE(); |
||
411 | |||
412 | /* Get Start Tick */ |
||
413 | tickstart = HAL_GetTick(); |
||
414 | |||
415 | /* Wait till HSI is disabled */ |
||
416 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) |
||
417 | { |
||
418 | if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
||
419 | { |
||
420 | return HAL_TIMEOUT; |
||
421 | } |
||
422 | } |
||
423 | } |
||
424 | } |
||
425 | } |
||
426 | /*----------------------------- MSI Configuration --------------------------*/ |
||
427 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) |
||
428 | { |
||
429 | /* When the MSI is used as system clock it will not be disabled */ |
||
430 | if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) ) |
||
431 | { |
||
432 | if((__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF)) |
||
433 | { |
||
434 | return HAL_ERROR; |
||
435 | } |
||
436 | /* Otherwise, just the calibration and MSI range change are allowed */ |
||
437 | else |
||
438 | { |
||
439 | /* Check MSICalibrationValue and MSIClockRange input parameters */ |
||
440 | assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue)); |
||
441 | assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange)); |
||
442 | |||
443 | /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
||
444 | must be correctly programmed according to the frequency of the CPU clock |
||
445 | (HCLK) and the supply voltage of the device. */ |
||
446 | if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE()) |
||
447 | { |
||
448 | /* First increase number of wait states update if necessary */ |
||
449 | if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) |
||
450 | { |
||
451 | return HAL_ERROR; |
||
452 | } |
||
453 | |||
454 | /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
||
455 | __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
||
456 | /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
||
457 | __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
||
458 | } |
||
459 | else |
||
460 | { |
||
461 | /* Else, keep current flash latency while decreasing applies */ |
||
462 | /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
||
463 | __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
||
464 | /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
||
465 | __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
||
466 | |||
467 | /* Decrease number of wait states update if necessary */ |
||
468 | if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) |
||
469 | { |
||
470 | return HAL_ERROR; |
||
471 | } |
||
472 | } |
||
473 | |||
474 | /* Update the SystemCoreClock global variable */ |
||
475 | SystemCoreClock = (32768U * (1U << ((RCC_OscInitStruct->MSIClockRange >> RCC_ICSCR_MSIRANGE_BITNUMBER) + 1U))) |
||
476 | >> AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_BITNUMBER)]; |
||
477 | |||
478 | /* Configure the source of time base considering new system clocks settings*/ |
||
479 | HAL_InitTick (TICK_INT_PRIORITY); |
||
480 | } |
||
481 | } |
||
482 | else |
||
483 | { |
||
484 | /* Check MSI State */ |
||
485 | assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState)); |
||
486 | |||
487 | /* Check the MSI State */ |
||
488 | if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF) |
||
489 | { |
||
490 | /* Enable the Multi Speed oscillator (MSI). */ |
||
491 | __HAL_RCC_MSI_ENABLE(); |
||
492 | |||
493 | /* Get Start Tick */ |
||
494 | tickstart = HAL_GetTick(); |
||
495 | |||
496 | /* Wait till MSI is ready */ |
||
497 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == RESET) |
||
498 | { |
||
499 | if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
||
500 | { |
||
501 | return HAL_TIMEOUT; |
||
502 | } |
||
503 | } |
||
504 | /* Check MSICalibrationValue and MSIClockRange input parameters */ |
||
505 | assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue)); |
||
506 | assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange)); |
||
507 | |||
508 | /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
||
509 | __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
||
510 | /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
||
511 | __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
||
512 | |||
513 | } |
||
514 | else |
||
515 | { |
||
516 | /* Disable the Multi Speed oscillator (MSI). */ |
||
517 | __HAL_RCC_MSI_DISABLE(); |
||
518 | |||
519 | /* Get Start Tick */ |
||
520 | tickstart = HAL_GetTick(); |
||
521 | |||
522 | /* Wait till MSI is ready */ |
||
523 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET) |
||
524 | { |
||
525 | if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
||
526 | { |
||
527 | return HAL_TIMEOUT; |
||
528 | } |
||
529 | } |
||
530 | } |
||
531 | } |
||
532 | } |
||
533 | /*------------------------------ LSI Configuration -------------------------*/ |
||
534 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
||
535 | { |
||
536 | /* Check the parameters */ |
||
537 | assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
||
538 | |||
539 | /* Check the LSI State */ |
||
540 | if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
||
541 | { |
||
542 | /* Enable the Internal Low Speed oscillator (LSI). */ |
||
543 | __HAL_RCC_LSI_ENABLE(); |
||
544 | |||
545 | /* Get Start Tick */ |
||
546 | tickstart = HAL_GetTick(); |
||
547 | |||
548 | /* Wait till LSI is ready */ |
||
549 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) |
||
550 | { |
||
551 | if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
||
552 | { |
||
553 | return HAL_TIMEOUT; |
||
554 | } |
||
555 | } |
||
556 | } |
||
557 | else |
||
558 | { |
||
559 | /* Disable the Internal Low Speed oscillator (LSI). */ |
||
560 | __HAL_RCC_LSI_DISABLE(); |
||
561 | |||
562 | /* Get Start Tick */ |
||
563 | tickstart = HAL_GetTick(); |
||
564 | |||
565 | /* Wait till LSI is disabled */ |
||
566 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) |
||
567 | { |
||
568 | if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
||
569 | { |
||
570 | return HAL_TIMEOUT; |
||
571 | } |
||
572 | } |
||
573 | } |
||
574 | } |
||
575 | /*------------------------------ LSE Configuration -------------------------*/ |
||
576 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
||
577 | { |
||
578 | FlagStatus pwrclkchanged = RESET; |
||
579 | |||
580 | /* Check the parameters */ |
||
581 | assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
||
582 | |||
583 | /* Update LSE configuration in Backup Domain control register */ |
||
584 | /* Requires to enable write access to Backup Domain of necessary */ |
||
585 | if(__HAL_RCC_PWR_IS_CLK_DISABLED()) |
||
586 | { |
||
587 | __HAL_RCC_PWR_CLK_ENABLE(); |
||
588 | pwrclkchanged = SET; |
||
589 | } |
||
590 | |||
591 | if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
||
592 | { |
||
593 | /* Enable write access to Backup domain */ |
||
594 | SET_BIT(PWR->CR, PWR_CR_DBP); |
||
595 | |||
596 | /* Wait for Backup domain Write protection disable */ |
||
597 | tickstart = HAL_GetTick(); |
||
598 | |||
599 | while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
||
600 | { |
||
601 | if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
||
602 | { |
||
603 | return HAL_TIMEOUT; |
||
604 | } |
||
605 | } |
||
606 | } |
||
607 | |||
608 | /* Set the new LSE configuration -----------------------------------------*/ |
||
609 | __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
||
610 | /* Check the LSE State */ |
||
611 | if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
||
612 | { |
||
613 | /* Get Start Tick */ |
||
614 | tickstart = HAL_GetTick(); |
||
615 | |||
616 | /* Wait till LSE is ready */ |
||
617 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) |
||
618 | { |
||
619 | if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
||
620 | { |
||
621 | return HAL_TIMEOUT; |
||
622 | } |
||
623 | } |
||
624 | } |
||
625 | else |
||
626 | { |
||
627 | /* Get Start Tick */ |
||
628 | tickstart = HAL_GetTick(); |
||
629 | |||
630 | /* Wait till LSE is disabled */ |
||
631 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
||
632 | { |
||
633 | if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
||
634 | { |
||
635 | return HAL_TIMEOUT; |
||
636 | } |
||
637 | } |
||
638 | } |
||
639 | |||
640 | /* Require to disable power clock if necessary */ |
||
641 | if(pwrclkchanged == SET) |
||
642 | { |
||
643 | __HAL_RCC_PWR_CLK_DISABLE(); |
||
644 | } |
||
645 | } |
||
646 | |||
647 | /*-------------------------------- PLL Configuration -----------------------*/ |
||
648 | /* Check the parameters */ |
||
649 | assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
||
650 | if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
||
651 | { |
||
652 | /* Check if the PLL is used as system clock or not */ |
||
653 | if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
||
654 | { |
||
655 | if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
||
656 | { |
||
657 | /* Check the parameters */ |
||
658 | assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
||
659 | assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL)); |
||
660 | assert_param(IS_RCC_PLL_DIV(RCC_OscInitStruct->PLL.PLLDIV)); |
||
661 | |||
662 | /* Disable the main PLL. */ |
||
663 | __HAL_RCC_PLL_DISABLE(); |
||
664 | |||
665 | /* Get Start Tick */ |
||
666 | tickstart = HAL_GetTick(); |
||
667 | |||
668 | /* Wait till PLL is disabled */ |
||
669 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
||
670 | { |
||
671 | if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
||
672 | { |
||
673 | return HAL_TIMEOUT; |
||
674 | } |
||
675 | } |
||
676 | |||
677 | /* Configure the main PLL clock source, multiplication and division factors. */ |
||
678 | __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
||
679 | RCC_OscInitStruct->PLL.PLLMUL, |
||
680 | RCC_OscInitStruct->PLL.PLLDIV); |
||
681 | /* Enable the main PLL. */ |
||
682 | __HAL_RCC_PLL_ENABLE(); |
||
683 | |||
684 | /* Get Start Tick */ |
||
685 | tickstart = HAL_GetTick(); |
||
686 | |||
687 | /* Wait till PLL is ready */ |
||
688 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
||
689 | { |
||
690 | if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
||
691 | { |
||
692 | return HAL_TIMEOUT; |
||
693 | } |
||
694 | } |
||
695 | } |
||
696 | else |
||
697 | { |
||
698 | /* Disable the main PLL. */ |
||
699 | __HAL_RCC_PLL_DISABLE(); |
||
700 | |||
701 | /* Get Start Tick */ |
||
702 | tickstart = HAL_GetTick(); |
||
703 | |||
704 | /* Wait till PLL is disabled */ |
||
705 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
||
706 | { |
||
707 | if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
||
708 | { |
||
709 | return HAL_TIMEOUT; |
||
710 | } |
||
711 | } |
||
712 | } |
||
713 | } |
||
714 | else |
||
715 | { |
||
716 | return HAL_ERROR; |
||
717 | } |
||
718 | } |
||
719 | |||
720 | return HAL_OK; |
||
721 | } |
||
722 | |||
723 | /** |
||
724 | * @brief Initializes the CPU, AHB and APB buses clocks according to the specified |
||
725 | * parameters in the RCC_ClkInitStruct. |
||
726 | * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
||
727 | * contains the configuration information for the RCC peripheral. |
||
728 | * @param FLatency FLASH Latency |
||
729 | * The value of this parameter depend on device used within the same series |
||
730 | * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
||
731 | * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function |
||
732 | * |
||
733 | * @note The MSI is used (enabled by hardware) as system clock source after |
||
734 | * start-up from Reset, wake-up from STOP and STANDBY mode, or in case |
||
735 | * of failure of the HSE used directly or indirectly as system clock |
||
736 | * (if the Clock Security System CSS is enabled). |
||
737 | * |
||
738 | * @note A switch from one clock source to another occurs only if the target |
||
739 | * clock source is ready (clock stable after start-up delay or PLL locked). |
||
740 | * If a clock source which is not yet ready is selected, the switch will |
||
741 | * occur when the clock source will be ready. |
||
742 | * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is |
||
743 | * currently used as system clock source. |
||
744 | * @note Depending on the device voltage range, the software has to set correctly |
||
745 | * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency |
||
746 | * (for more details refer to section above "Initialization/de-initialization functions") |
||
747 | * @retval HAL status |
||
748 | */ |
||
749 | HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
||
750 | { |
||
751 | uint32_t tickstart = 0U; |
||
752 | |||
753 | /* Check the parameters */ |
||
754 | assert_param(RCC_ClkInitStruct != NULL); |
||
755 | assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
||
756 | assert_param(IS_FLASH_LATENCY(FLatency)); |
||
757 | |||
758 | /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
||
759 | must be correctly programmed according to the frequency of the CPU clock |
||
760 | (HCLK) and the supply voltage of the device. */ |
||
761 | |||
762 | /* Increasing the number of wait states because of higher CPU frequency */ |
||
763 | if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY)) |
||
764 | { |
||
765 | /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
||
766 | __HAL_FLASH_SET_LATENCY(FLatency); |
||
767 | |||
768 | /* Check that the new number of wait states is taken into account to access the Flash |
||
769 | memory by reading the FLASH_ACR register */ |
||
770 | if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
||
771 | { |
||
772 | return HAL_ERROR; |
||
773 | } |
||
774 | } |
||
775 | |||
776 | /*-------------------------- HCLK Configuration --------------------------*/ |
||
777 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
||
778 | { |
||
779 | assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
||
780 | MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
||
781 | } |
||
782 | |||
783 | /*------------------------- SYSCLK Configuration ---------------------------*/ |
||
784 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
||
785 | { |
||
786 | assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
||
787 | |||
788 | /* HSE is selected as System Clock Source */ |
||
789 | if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
||
790 | { |
||
791 | /* Check the HSE ready flag */ |
||
792 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
||
793 | { |
||
794 | return HAL_ERROR; |
||
795 | } |
||
796 | } |
||
797 | /* PLL is selected as System Clock Source */ |
||
798 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
||
799 | { |
||
800 | /* Check the PLL ready flag */ |
||
801 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
||
802 | { |
||
803 | return HAL_ERROR; |
||
804 | } |
||
805 | } |
||
806 | /* HSI is selected as System Clock Source */ |
||
807 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI) |
||
808 | { |
||
809 | /* Check the HSI ready flag */ |
||
810 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
||
811 | { |
||
812 | return HAL_ERROR; |
||
813 | } |
||
814 | } |
||
815 | /* MSI is selected as System Clock Source */ |
||
816 | else |
||
817 | { |
||
818 | /* Check the MSI ready flag */ |
||
819 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == RESET) |
||
820 | { |
||
821 | return HAL_ERROR; |
||
822 | } |
||
823 | } |
||
824 | __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
||
825 | |||
826 | /* Get Start Tick */ |
||
827 | tickstart = HAL_GetTick(); |
||
828 | |||
829 | if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
||
830 | { |
||
831 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) |
||
832 | { |
||
833 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
834 | { |
||
835 | return HAL_TIMEOUT; |
||
836 | } |
||
837 | } |
||
838 | } |
||
839 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
||
840 | { |
||
841 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
||
842 | { |
||
843 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
844 | { |
||
845 | return HAL_TIMEOUT; |
||
846 | } |
||
847 | } |
||
848 | } |
||
849 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI) |
||
850 | { |
||
851 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) |
||
852 | { |
||
853 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
854 | { |
||
855 | return HAL_TIMEOUT; |
||
856 | } |
||
857 | } |
||
858 | } |
||
859 | else |
||
860 | { |
||
861 | while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_MSI) |
||
862 | { |
||
863 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
864 | { |
||
865 | return HAL_TIMEOUT; |
||
866 | } |
||
867 | } |
||
868 | } |
||
869 | } |
||
870 | /* Decreasing the number of wait states because of lower CPU frequency */ |
||
871 | if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY)) |
||
872 | { |
||
873 | /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
||
874 | __HAL_FLASH_SET_LATENCY(FLatency); |
||
875 | |||
876 | /* Check that the new number of wait states is taken into account to access the Flash |
||
877 | memory by reading the FLASH_ACR register */ |
||
878 | if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
||
879 | { |
||
880 | return HAL_ERROR; |
||
881 | } |
||
882 | } |
||
883 | |||
884 | /*-------------------------- PCLK1 Configuration ---------------------------*/ |
||
885 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
||
886 | { |
||
887 | assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
||
888 | MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); |
||
889 | } |
||
890 | |||
891 | /*-------------------------- PCLK2 Configuration ---------------------------*/ |
||
892 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
||
893 | { |
||
894 | assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); |
||
895 | MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3)); |
||
896 | } |
||
897 | |||
898 | /* Update the SystemCoreClock global variable */ |
||
899 | SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER]; |
||
900 | |||
901 | /* Configure the source of time base considering new system clocks settings*/ |
||
902 | HAL_InitTick (TICK_INT_PRIORITY); |
||
903 | |||
904 | return HAL_OK; |
||
905 | } |
||
906 | |||
907 | /** |
||
908 | * @} |
||
909 | */ |
||
910 | |||
911 | /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
||
912 | * @brief RCC clocks control functions |
||
913 | * |
||
914 | @verbatim |
||
915 | =============================================================================== |
||
916 | ##### Peripheral Control functions ##### |
||
917 | =============================================================================== |
||
918 | [..] |
||
919 | This subsection provides a set of functions allowing to control the RCC Clocks |
||
920 | frequencies. |
||
921 | |||
922 | @endverbatim |
||
923 | * @{ |
||
924 | */ |
||
925 | |||
926 | /** |
||
927 | * @brief Selects the clock source to output on MCO pin. |
||
928 | * @note MCO pin should be configured in alternate function mode. |
||
929 | * @param RCC_MCOx specifies the output direction for the clock source. |
||
930 | * This parameter can be one of the following values: |
||
931 | * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). |
||
932 | * @param RCC_MCOSource specifies the clock source to output. |
||
933 | * This parameter can be one of the following values: |
||
934 | * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock |
||
935 | * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock |
||
936 | * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock |
||
937 | * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock |
||
938 | * @arg @ref RCC_MCO1SOURCE_MSI MSI oscillator clock selected as MCO clock |
||
939 | * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock selected as MCO clock |
||
940 | * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO clock |
||
941 | * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO clock |
||
942 | * @param RCC_MCODiv specifies the MCO DIV. |
||
943 | * This parameter can be one of the following values: |
||
944 | * @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
||
945 | * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock |
||
946 | * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock |
||
947 | * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock |
||
948 | * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock |
||
949 | * @retval None |
||
950 | */ |
||
951 | void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
||
952 | { |
||
953 | GPIO_InitTypeDef gpio = {0}; |
||
954 | |||
955 | /* Check the parameters */ |
||
956 | assert_param(IS_RCC_MCO(RCC_MCOx)); |
||
957 | assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
||
958 | assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
||
959 | |||
960 | /* Configure the MCO1 pin in alternate function mode */ |
||
961 | gpio.Mode = GPIO_MODE_AF_PP; |
||
962 | gpio.Speed = GPIO_SPEED_FREQ_HIGH; |
||
963 | gpio.Pull = GPIO_NOPULL; |
||
964 | gpio.Pin = MCO1_PIN; |
||
965 | gpio.Alternate = GPIO_AF0_MCO; |
||
966 | |||
967 | /* MCO1 Clock Enable */ |
||
968 | MCO1_CLK_ENABLE(); |
||
969 | |||
970 | HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio); |
||
971 | |||
972 | /* Configure the MCO clock source */ |
||
973 | __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv); |
||
974 | } |
||
975 | |||
976 | /** |
||
977 | * @brief Enables the Clock Security System. |
||
978 | * @note If a failure is detected on the HSE oscillator clock, this oscillator |
||
979 | * is automatically disabled and an interrupt is generated to inform the |
||
980 | * software about the failure (Clock Security System Interrupt, CSSI), |
||
981 | * allowing the MCU to perform rescue operations. The CSSI is linked to |
||
982 | * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector. |
||
983 | * @retval None |
||
984 | */ |
||
985 | void HAL_RCC_EnableCSS(void) |
||
986 | { |
||
987 | *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE; |
||
988 | } |
||
989 | |||
990 | /** |
||
991 | * @brief Disables the Clock Security System. |
||
992 | * @retval None |
||
993 | */ |
||
994 | void HAL_RCC_DisableCSS(void) |
||
995 | { |
||
996 | *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE; |
||
997 | } |
||
998 | |||
999 | /** |
||
1000 | * @brief Returns the SYSCLK frequency |
||
1001 | * @note The system frequency computed by this function is not the real |
||
1002 | * frequency in the chip. It is calculated based on the predefined |
||
1003 | * constant and the selected clock source: |
||
1004 | * @note If SYSCLK source is MSI, function returns a value based on MSI |
||
1005 | * Value as defined by the MSI range. |
||
1006 | * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
||
1007 | * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE(**) |
||
1008 | * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE(**) |
||
1009 | * or HSI_VALUE(*) multiplied/divided by the PLL factors. |
||
1010 | * @note (*) HSI_VALUE is a constant defined in stm32l1xx_hal_conf.h file (default value |
||
1011 | * 16 MHz) but the real value may vary depending on the variations |
||
1012 | * in voltage and temperature. |
||
1013 | * @note (**) HSE_VALUE is a constant defined in stm32l1xx_hal_conf.h file (default value |
||
1014 | * 8 MHz), user has to ensure that HSE_VALUE is same as the real |
||
1015 | * frequency of the crystal used. Otherwise, this function may |
||
1016 | * have wrong result. |
||
1017 | * |
||
1018 | * @note The result of this function could be not correct when using fractional |
||
1019 | * value for HSE crystal. |
||
1020 | * |
||
1021 | * @note This function can be used by the user application to compute the |
||
1022 | * baud-rate for the communication peripherals or configure other parameters. |
||
1023 | * |
||
1024 | * @note Each time SYSCLK changes, this function must be called to update the |
||
1025 | * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
||
1026 | * |
||
1027 | * @retval SYSCLK frequency |
||
1028 | */ |
||
1029 | uint32_t HAL_RCC_GetSysClockFreq(void) |
||
1030 | { |
||
1031 | uint32_t tmpreg = 0, pllm = 0, plld = 0, pllvco = 0, msiclkrange = 0; |
||
1032 | uint32_t sysclockfreq = 0; |
||
1033 | |||
1034 | tmpreg = RCC->CFGR; |
||
1035 | |||
1036 | /* Get SYSCLK source -------------------------------------------------------*/ |
||
1037 | switch (tmpreg & RCC_CFGR_SWS) |
||
1038 | { |
||
1039 | case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ |
||
1040 | { |
||
1041 | sysclockfreq = HSI_VALUE; |
||
1042 | break; |
||
1043 | } |
||
1044 | case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */ |
||
1045 | { |
||
1046 | sysclockfreq = HSE_VALUE; |
||
1047 | break; |
||
1048 | } |
||
1049 | case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */ |
||
1050 | { |
||
1051 | pllm = PLLMulTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER]; |
||
1052 | plld = ((uint32_t)(tmpreg & RCC_CFGR_PLLDIV) >> RCC_CFGR_PLLDIV_BITNUMBER) + 1; |
||
1053 | if (__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI) |
||
1054 | { |
||
1055 | /* HSE used as PLL clock source */ |
||
1056 | pllvco = (HSE_VALUE * pllm) / plld; |
||
1057 | } |
||
1058 | else |
||
1059 | { |
||
1060 | /* HSI used as PLL clock source */ |
||
1061 | pllvco = (HSI_VALUE * pllm) / plld; |
||
1062 | } |
||
1063 | sysclockfreq = pllvco; |
||
1064 | break; |
||
1065 | } |
||
1066 | case RCC_SYSCLKSOURCE_STATUS_MSI: /* MSI used as system clock source */ |
||
1067 | default: /* MSI used as system clock */ |
||
1068 | { |
||
1069 | msiclkrange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> RCC_ICSCR_MSIRANGE_BITNUMBER; |
||
1070 | sysclockfreq = (32768 * (1 << (msiclkrange + 1))); |
||
1071 | break; |
||
1072 | } |
||
1073 | } |
||
1074 | return sysclockfreq; |
||
1075 | } |
||
1076 | |||
1077 | /** |
||
1078 | * @brief Returns the HCLK frequency |
||
1079 | * @note Each time HCLK changes, this function must be called to update the |
||
1080 | * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
||
1081 | * |
||
1082 | * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
||
1083 | * and updated within this function |
||
1084 | * @retval HCLK frequency |
||
1085 | */ |
||
1086 | uint32_t HAL_RCC_GetHCLKFreq(void) |
||
1087 | { |
||
1088 | return SystemCoreClock; |
||
1089 | } |
||
1090 | |||
1091 | /** |
||
1092 | * @brief Returns the PCLK1 frequency |
||
1093 | * @note Each time PCLK1 changes, this function must be called to update the |
||
1094 | * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
||
1095 | * @retval PCLK1 frequency |
||
1096 | */ |
||
1097 | uint32_t HAL_RCC_GetPCLK1Freq(void) |
||
1098 | { |
||
1099 | /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
||
1100 | return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_BITNUMBER]); |
||
1101 | } |
||
1102 | |||
1103 | /** |
||
1104 | * @brief Returns the PCLK2 frequency |
||
1105 | * @note Each time PCLK2 changes, this function must be called to update the |
||
1106 | * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
||
1107 | * @retval PCLK2 frequency |
||
1108 | */ |
||
1109 | uint32_t HAL_RCC_GetPCLK2Freq(void) |
||
1110 | { |
||
1111 | /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
||
1112 | return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_BITNUMBER]); |
||
1113 | } |
||
1114 | |||
1115 | /** |
||
1116 | * @brief Configures the RCC_OscInitStruct according to the internal |
||
1117 | * RCC configuration registers. |
||
1118 | * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
||
1119 | * will be configured. |
||
1120 | * @retval None |
||
1121 | */ |
||
1122 | void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
||
1123 | { |
||
1124 | /* Check the parameters */ |
||
1125 | assert_param(RCC_OscInitStruct != NULL); |
||
1126 | |||
1127 | /* Set all possible values for the Oscillator type parameter ---------------*/ |
||
1128 | RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \ |
||
1129 | | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_MSI; |
||
1130 | |||
1131 | |||
1132 | /* Get the HSE configuration -----------------------------------------------*/ |
||
1133 | if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
||
1134 | { |
||
1135 | RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
||
1136 | } |
||
1137 | else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) |
||
1138 | { |
||
1139 | RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
||
1140 | } |
||
1141 | else |
||
1142 | { |
||
1143 | RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
||
1144 | } |
||
1145 | |||
1146 | /* Get the HSI configuration -----------------------------------------------*/ |
||
1147 | if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) |
||
1148 | { |
||
1149 | RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
||
1150 | } |
||
1151 | else |
||
1152 | { |
||
1153 | RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
||
1154 | } |
||
1155 | |||
1156 | RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> POSITION_VAL(RCC_ICSCR_HSITRIM)); |
||
1157 | |||
1158 | /* Get the MSI configuration -----------------------------------------------*/ |
||
1159 | if((RCC->CR &RCC_CR_MSION) == RCC_CR_MSION) |
||
1160 | { |
||
1161 | RCC_OscInitStruct->MSIState = RCC_MSI_ON; |
||
1162 | } |
||
1163 | else |
||
1164 | { |
||
1165 | RCC_OscInitStruct->MSIState = RCC_MSI_OFF; |
||
1166 | } |
||
1167 | |||
1168 | RCC_OscInitStruct->MSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_BITNUMBER); |
||
1169 | RCC_OscInitStruct->MSIClockRange = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSIRANGE)); |
||
1170 | |||
1171 | /* Get the LSE configuration -----------------------------------------------*/ |
||
1172 | if((RCC->CSR &RCC_CSR_LSEBYP) == RCC_CSR_LSEBYP) |
||
1173 | { |
||
1174 | RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
||
1175 | } |
||
1176 | else if((RCC->CSR &RCC_CSR_LSEON) == RCC_CSR_LSEON) |
||
1177 | { |
||
1178 | RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
||
1179 | } |
||
1180 | else |
||
1181 | { |
||
1182 | RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
||
1183 | } |
||
1184 | |||
1185 | /* Get the LSI configuration -----------------------------------------------*/ |
||
1186 | if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) |
||
1187 | { |
||
1188 | RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
||
1189 | } |
||
1190 | else |
||
1191 | { |
||
1192 | RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
||
1193 | } |
||
1194 | |||
1195 | |||
1196 | /* Get the PLL configuration -----------------------------------------------*/ |
||
1197 | if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) |
||
1198 | { |
||
1199 | RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
||
1200 | } |
||
1201 | else |
||
1202 | { |
||
1203 | RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
||
1204 | } |
||
1205 | RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC); |
||
1206 | RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL); |
||
1207 | RCC_OscInitStruct->PLL.PLLDIV = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLDIV); |
||
1208 | } |
||
1209 | |||
1210 | /** |
||
1211 | * @brief Get the RCC_ClkInitStruct according to the internal |
||
1212 | * RCC configuration registers. |
||
1213 | * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
||
1214 | * contains the current clock configuration. |
||
1215 | * @param pFLatency Pointer on the Flash Latency. |
||
1216 | * @retval None |
||
1217 | */ |
||
1218 | void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
||
1219 | { |
||
1220 | /* Check the parameters */ |
||
1221 | assert_param(RCC_ClkInitStruct != NULL); |
||
1222 | assert_param(pFLatency != NULL); |
||
1223 | |||
1224 | /* Set all possible values for the Clock type parameter --------------------*/ |
||
1225 | RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; |
||
1226 | |||
1227 | /* Get the SYSCLK configuration --------------------------------------------*/ |
||
1228 | RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
||
1229 | |||
1230 | /* Get the HCLK configuration ----------------------------------------------*/ |
||
1231 | RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
||
1232 | |||
1233 | /* Get the APB1 configuration ----------------------------------------------*/ |
||
1234 | RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); |
||
1235 | |||
1236 | /* Get the APB2 configuration ----------------------------------------------*/ |
||
1237 | RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3); |
||
1238 | |||
1239 | /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
||
1240 | *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
||
1241 | } |
||
1242 | |||
1243 | /** |
||
1244 | * @brief This function handles the RCC CSS interrupt request. |
||
1245 | * @note This API should be called under the NMI_Handler(). |
||
1246 | * @retval None |
||
1247 | */ |
||
1248 | void HAL_RCC_NMI_IRQHandler(void) |
||
1249 | { |
||
1250 | /* Check RCC CSSF flag */ |
||
1251 | if(__HAL_RCC_GET_IT(RCC_IT_CSS)) |
||
1252 | { |
||
1253 | /* RCC Clock Security System interrupt user callback */ |
||
1254 | HAL_RCC_CSSCallback(); |
||
1255 | |||
1256 | /* Clear RCC CSS pending bit */ |
||
1257 | __HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
||
1258 | } |
||
1259 | } |
||
1260 | |||
1261 | /** |
||
1262 | * @brief RCC Clock Security System interrupt callback |
||
1263 | * @retval none |
||
1264 | */ |
||
1265 | __weak void HAL_RCC_CSSCallback(void) |
||
1266 | { |
||
1267 | /* NOTE : This function Should not be modified, when the callback is needed, |
||
1268 | the HAL_RCC_CSSCallback could be implemented in the user file |
||
1269 | */ |
||
1270 | } |
||
1271 | |||
1272 | /** |
||
1273 | * @} |
||
1274 | */ |
||
1275 | |||
1276 | /** |
||
1277 | * @} |
||
1278 | */ |
||
1279 | |||
1280 | /* Private function prototypes -----------------------------------------------*/ |
||
1281 | /** @addtogroup RCC_Private_Functions |
||
1282 | * @{ |
||
1283 | */ |
||
1284 | /** |
||
1285 | * @brief Update number of Flash wait states in line with MSI range and current |
||
1286 | voltage range |
||
1287 | * @param MSIrange MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_6 |
||
1288 | * @retval HAL status |
||
1289 | */ |
||
1290 | static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange) |
||
1291 | { |
||
1292 | uint32_t vos = 0; |
||
1293 | uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */ |
||
1294 | |||
1295 | /* HCLK can reach 4 MHz only if AHB prescaler = 1 */ |
||
1296 | if (READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1) |
||
1297 | { |
||
1298 | if(__HAL_RCC_PWR_IS_CLK_ENABLED()) |
||
1299 | { |
||
1300 | vos = HAL_PWREx_GetVoltageRange(); |
||
1301 | } |
||
1302 | else |
||
1303 | { |
||
1304 | __HAL_RCC_PWR_CLK_ENABLE(); |
||
1305 | vos = HAL_PWREx_GetVoltageRange(); |
||
1306 | __HAL_RCC_PWR_CLK_DISABLE(); |
||
1307 | } |
||
1308 | |||
1309 | /* Check if need to set latency 1 only for Range 3 & HCLK = 4MHz */ |
||
1310 | if((vos == PWR_REGULATOR_VOLTAGE_SCALE3) && (MSIrange == RCC_MSIRANGE_6)) |
||
1311 | { |
||
1312 | latency = FLASH_LATENCY_1; /* 1WS */ |
||
1313 | } |
||
1314 | } |
||
1315 | |||
1316 | __HAL_FLASH_SET_LATENCY(latency); |
||
1317 | |||
1318 | /* Check that the new number of wait states is taken into account to access the Flash |
||
1319 | memory by reading the FLASH_ACR register */ |
||
1320 | if((FLASH->ACR & FLASH_ACR_LATENCY) != latency) |
||
1321 | { |
||
1322 | return HAL_ERROR; |
||
1323 | } |
||
1324 | |||
1325 | return HAL_OK; |
||
1326 | } |
||
1327 | |||
1328 | /** |
||
1329 | * @} |
||
1330 | */ |
||
1331 | |||
1332 | #endif /* HAL_RCC_MODULE_ENABLED */ |
||
1333 | /** |
||
1334 | * @} |
||
1335 | */ |
||
1336 | |||
1337 | /** |
||
1338 | * @} |
||
1339 | */ |
||
1340 | |||
1341 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |