Rev 56 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
77 | mjames | 1 | /** |
2 | ****************************************************************************** |
||
3 | * @file stm32l1xx_hal_cryp.c |
||
4 | * @author MCD Application Team |
||
5 | * @brief CRYP HAL module driver. |
||
6 | * |
||
7 | * This file provides firmware functions to manage the following |
||
8 | * functionalities of the Cryptography (CRYP) peripheral: |
||
9 | * + Initialization and de-initialization functions |
||
10 | * + Processing functions by algorithm using polling mode |
||
11 | * + Processing functions by algorithm using interrupt mode |
||
12 | * + Processing functions by algorithm using DMA mode |
||
13 | * + Peripheral State functions |
||
14 | * |
||
15 | @verbatim |
||
16 | ============================================================================== |
||
17 | ##### How to use this driver ##### |
||
18 | ============================================================================== |
||
19 | [..] |
||
20 | The CRYP HAL driver can be used as follows: |
||
21 | |||
22 | (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): |
||
23 | (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() |
||
24 | (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT()) |
||
25 | (+) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() |
||
26 | (+) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() |
||
27 | (+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() |
||
28 | (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA()) |
||
29 | (+) Enable the DMA2 interface clock using |
||
30 | (++) __HAL_RCC_DMA2_CLK_ENABLE() |
||
31 | (+) Configure and enable two DMA Channels one for managing data transfer from |
||
32 | memory to peripheral (input channel) and another channel for managing data |
||
33 | transfer from peripheral to memory (output channel) |
||
34 | (+) Associate the initialized DMA handle to the CRYP DMA handle |
||
35 | using __HAL_LINKDMA() |
||
36 | (+) Configure the priority and enable the NVIC for the transfer complete |
||
37 | interrupt on the two DMA Streams. The output stream should have higher |
||
38 | priority than the input stream. |
||
39 | (++) HAL_NVIC_SetPriority() |
||
40 | (++) HAL_NVIC_EnableIRQ() |
||
41 | |||
42 | (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: |
||
43 | (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit |
||
44 | (##) The encryption/decryption key. |
||
45 | (##) The initialization vector (counter). It is not used ECB mode. |
||
46 | |||
47 | (#)Three processing (encryption/decryption) functions are available: |
||
48 | (##) Polling mode: encryption and decryption APIs are blocking functions |
||
49 | i.e. they process the data and wait till the processing is finished |
||
50 | e.g. HAL_CRYP_AESCBC_Encrypt() |
||
51 | (##) Interrupt mode: encryption and decryption APIs are not blocking functions |
||
52 | i.e. they process the data under interrupt |
||
53 | e.g. HAL_CRYP_AESCBC_Encrypt_IT() |
||
54 | (##) DMA mode: encryption and decryption APIs are not blocking functions |
||
55 | i.e. the data transfer is ensured by DMA |
||
56 | e.g. HAL_CRYP_AESCBC_Encrypt_DMA() |
||
57 | |||
58 | (#)When the processing function is called for the first time after HAL_CRYP_Init() |
||
59 | the CRYP peripheral is initialized and processes the buffer in input. |
||
60 | At second call, the processing function performs an append of the already |
||
61 | processed buffer. |
||
62 | When a new data block is to be processed, call HAL_CRYP_Init() then the |
||
63 | processing function. |
||
64 | |||
65 | (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. |
||
66 | |||
67 | @endverbatim |
||
68 | ****************************************************************************** |
||
69 | * @attention |
||
70 | * |
||
71 | * Copyright (c) 2017 STMicroelectronics. |
||
72 | * All rights reserved. |
||
73 | * |
||
74 | * This software is licensed under terms that can be found in the LICENSE file |
||
75 | * in the root directory of this software component. |
||
76 | * If no LICENSE file comes with this software, it is provided AS-IS. |
||
77 | * |
||
78 | ****************************************************************************** |
||
79 | */ |
||
80 | |||
81 | /* Includes ------------------------------------------------------------------*/ |
||
82 | #include "stm32l1xx_hal.h" |
||
83 | |||
84 | #ifdef HAL_CRYP_MODULE_ENABLED |
||
85 | |||
86 | /** @addtogroup STM32L1xx_HAL_Driver |
||
87 | * @{ |
||
88 | */ |
||
89 | |||
90 | /** @defgroup CRYP CRYP |
||
91 | * @brief CRYP HAL module driver. |
||
92 | * @{ |
||
93 | */ |
||
94 | |||
95 | #if defined(STM32L162xC) || defined(STM32L162xCA) || defined(STM32L162xD) || defined(STM32L162xE) || defined(STM32L162xDX) |
||
96 | |||
97 | /* Private typedef -----------------------------------------------------------*/ |
||
98 | /* Private define ------------------------------------------------------------*/ |
||
99 | |||
100 | /** @defgroup CRYP_Private_Defines CRYP Private Defines |
||
101 | * @{ |
||
102 | */ |
||
103 | |||
104 | #define CRYP_ALGO_CHAIN_MASK (AES_CR_MODE | AES_CR_CHMOD) |
||
105 | |||
106 | /** |
||
107 | * @} |
||
108 | */ |
||
109 | |||
110 | /* Private macro -------------------------------------------------------------*/ |
||
111 | /* Private variables ---------------------------------------------------------*/ |
||
112 | /* Private function prototypes -----------------------------------------------*/ |
||
113 | |||
114 | /** @defgroup CRYP_Private_Functions CRYP Private Functions |
||
115 | * @{ |
||
116 | */ |
||
117 | |||
118 | static HAL_StatusTypeDef CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp); |
||
119 | static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector); |
||
120 | static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key); |
||
121 | static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); |
||
122 | static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); |
||
123 | static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); |
||
124 | static void CRYP_DMAError(DMA_HandleTypeDef *hdma); |
||
125 | static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); |
||
126 | |||
127 | /** |
||
128 | * @} |
||
129 | */ |
||
130 | |||
131 | /* Private functions ---------------------------------------------------------*/ |
||
132 | |||
133 | /** @defgroup CRYP_Exported_Functions CRYP Exported Functions |
||
134 | * @{ |
||
135 | */ |
||
136 | |||
137 | /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions |
||
138 | * @brief Initialization and Configuration functions. |
||
139 | * |
||
140 | @verbatim |
||
141 | ============================================================================== |
||
142 | ##### Initialization and de-initialization functions ##### |
||
143 | ============================================================================== |
||
144 | [..] This section provides functions allowing to: |
||
145 | (+) Initialize the CRYP according to the specified parameters |
||
146 | in the CRYP_InitTypeDef and creates the associated handle |
||
147 | (+) DeInitialize the CRYP peripheral |
||
148 | (+) Initialize the CRYP MSP |
||
149 | (+) DeInitialize CRYP MSP |
||
150 | |||
151 | @endverbatim |
||
152 | * @{ |
||
153 | */ |
||
154 | |||
155 | /** |
||
156 | * @brief Initializes the CRYP according to the specified |
||
157 | * parameters in the CRYP_InitTypeDef and creates the associated handle. |
||
158 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
159 | * the configuration information for CRYP module |
||
160 | * @retval HAL status |
||
161 | */ |
||
162 | HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) |
||
163 | { |
||
164 | /* Check the CRYP handle allocation */ |
||
165 | if(hcryp == NULL) |
||
166 | { |
||
167 | return HAL_ERROR; |
||
168 | } |
||
169 | |||
170 | /* Check the parameters */ |
||
171 | assert_param(IS_AES_ALL_INSTANCE(hcryp->Instance)); |
||
172 | assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); |
||
173 | |||
174 | if(hcryp->State == HAL_CRYP_STATE_RESET) |
||
175 | { |
||
176 | /* Allocate lock resource and initialize it */ |
||
177 | hcryp->Lock = HAL_UNLOCKED; |
||
178 | |||
179 | /* Init the low level hardware */ |
||
180 | HAL_CRYP_MspInit(hcryp); |
||
181 | } |
||
182 | |||
183 | /* Check if AES already enabled */ |
||
184 | if (HAL_IS_BIT_CLR(hcryp->Instance->CR, AES_CR_EN)) |
||
185 | { |
||
186 | /* Change the CRYP state */ |
||
187 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
188 | |||
189 | /* Set the data type*/ |
||
190 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType); |
||
191 | |||
192 | /* Reset CrypInCount and CrypOutCount */ |
||
193 | hcryp->CrypInCount = 0; |
||
194 | hcryp->CrypOutCount = 0; |
||
195 | |||
196 | /* Change the CRYP state */ |
||
197 | hcryp->State = HAL_CRYP_STATE_READY; |
||
198 | |||
199 | /* Set the default CRYP phase */ |
||
200 | hcryp->Phase = HAL_CRYP_PHASE_READY; |
||
201 | |||
202 | /* Return function status */ |
||
203 | return HAL_OK; |
||
204 | } |
||
205 | else |
||
206 | { |
||
207 | /* The Datatype selection must be changed if the AES is disabled. Writing these bits while the AES is */ |
||
208 | /* enabled is forbidden to avoid unpredictable AES behavior.*/ |
||
209 | |||
210 | /* Return function status */ |
||
211 | return HAL_ERROR; |
||
212 | } |
||
213 | |||
214 | } |
||
215 | |||
216 | /** |
||
217 | * @brief DeInitializes the CRYP peripheral. |
||
218 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
219 | * the configuration information for CRYP module |
||
220 | * @retval HAL status |
||
221 | */ |
||
222 | HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) |
||
223 | { |
||
224 | /* Check the CRYP handle allocation */ |
||
225 | if(hcryp == NULL) |
||
226 | { |
||
227 | return HAL_ERROR; |
||
228 | } |
||
229 | |||
230 | /* Change the CRYP state */ |
||
231 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
232 | |||
233 | /* Set the default CRYP phase */ |
||
234 | hcryp->Phase = HAL_CRYP_PHASE_READY; |
||
235 | |||
236 | /* Reset CrypInCount and CrypOutCount */ |
||
237 | hcryp->CrypInCount = 0; |
||
238 | hcryp->CrypOutCount = 0; |
||
239 | |||
240 | /* Disable the CRYP Peripheral Clock */ |
||
241 | __HAL_CRYP_DISABLE(hcryp); |
||
242 | |||
243 | /* DeInit the low level hardware: CLOCK, NVIC.*/ |
||
244 | HAL_CRYP_MspDeInit(hcryp); |
||
245 | |||
246 | /* Change the CRYP state */ |
||
247 | hcryp->State = HAL_CRYP_STATE_RESET; |
||
248 | |||
249 | /* Release Lock */ |
||
250 | __HAL_UNLOCK(hcryp); |
||
251 | |||
252 | /* Return function status */ |
||
253 | return HAL_OK; |
||
254 | } |
||
255 | |||
256 | /** |
||
257 | * @brief Initializes the CRYP MSP. |
||
258 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
259 | * the configuration information for CRYP module |
||
260 | * @retval None |
||
261 | */ |
||
262 | __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) |
||
263 | { |
||
264 | /* Prevent unused argument(s) compilation warning */ |
||
265 | UNUSED(hcryp); |
||
266 | |||
267 | /* NOTE : This function should not be modified; when the callback is needed, |
||
268 | the HAL_CRYP_MspInit can be implemented in the user file */ |
||
269 | } |
||
270 | |||
271 | /** |
||
272 | * @brief DeInitializes CRYP MSP. |
||
273 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
274 | * the configuration information for CRYP module |
||
275 | * @retval None |
||
276 | */ |
||
277 | __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) |
||
278 | { |
||
279 | /* Prevent unused argument(s) compilation warning */ |
||
280 | UNUSED(hcryp); |
||
281 | |||
282 | /* NOTE : This function should not be modified; when the callback is needed, |
||
283 | the HAL_CRYP_MspDeInit can be implemented in the user file */ |
||
284 | } |
||
285 | |||
286 | /** |
||
287 | * @} |
||
288 | */ |
||
289 | |||
290 | /** @defgroup CRYP_Exported_Functions_Group2 AES processing functions |
||
291 | * @brief processing functions. |
||
292 | * |
||
293 | @verbatim |
||
294 | ============================================================================== |
||
295 | ##### AES processing functions ##### |
||
296 | ============================================================================== |
||
297 | [..] This section provides functions allowing to: |
||
298 | (+) Encrypt plaintext using AES algorithm in different chaining modes |
||
299 | (+) Decrypt cyphertext using AES algorithm in different chaining modes |
||
300 | [..] Three processing functions are available: |
||
301 | (+) Polling mode |
||
302 | (+) Interrupt mode |
||
303 | (+) DMA mode |
||
304 | |||
305 | @endverbatim |
||
306 | * @{ |
||
307 | */ |
||
308 | |||
309 | /** |
||
310 | * @brief Initializes the CRYP peripheral in AES ECB encryption mode |
||
311 | * then encrypt pPlainData. The cypher data are available in pCypherData |
||
312 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
313 | * the configuration information for CRYP module |
||
314 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
315 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
316 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
317 | * @param Timeout Specify Timeout value |
||
318 | * @retval HAL status |
||
319 | */ |
||
320 | HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) |
||
321 | { |
||
322 | /* Process Locked */ |
||
323 | __HAL_LOCK(hcryp); |
||
324 | |||
325 | /* Check that data aligned on u32 and Size multiple of 16*/ |
||
326 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
327 | { |
||
328 | /* Process Locked */ |
||
329 | __HAL_UNLOCK(hcryp); |
||
330 | |||
331 | /* Return function status */ |
||
332 | return HAL_ERROR; |
||
333 | } |
||
334 | |||
335 | /* Check if HAL_CRYP_Init has been called */ |
||
336 | if(hcryp->State != HAL_CRYP_STATE_RESET) |
||
337 | { |
||
338 | /* Change the CRYP state */ |
||
339 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
340 | |||
341 | /* Check if initialization phase has already been performed */ |
||
342 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
343 | { |
||
344 | /* Set the key */ |
||
345 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
346 | |||
347 | /* Reset the CHMOD & MODE bits */ |
||
348 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
349 | |||
350 | /* Set the CRYP peripheral in AES ECB mode */ |
||
351 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT); |
||
352 | |||
353 | /* Enable CRYP */ |
||
354 | __HAL_CRYP_ENABLE(hcryp); |
||
355 | |||
356 | /* Set the phase */ |
||
357 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
358 | } |
||
359 | |||
360 | /* Write Plain Data and Get Cypher Data */ |
||
361 | if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) |
||
362 | { |
||
363 | return HAL_TIMEOUT; |
||
364 | } |
||
365 | |||
366 | /* Change the CRYP state */ |
||
367 | hcryp->State = HAL_CRYP_STATE_READY; |
||
368 | |||
369 | /* Process Unlocked */ |
||
370 | __HAL_UNLOCK(hcryp); |
||
371 | |||
372 | /* Return function status */ |
||
373 | return HAL_OK; |
||
374 | } |
||
375 | else |
||
376 | { |
||
377 | /* Process Locked */ |
||
378 | __HAL_UNLOCK(hcryp); |
||
379 | |||
380 | /* Return function status */ |
||
381 | return HAL_ERROR; |
||
382 | } |
||
383 | } |
||
384 | |||
385 | /** |
||
386 | * @brief Initializes the CRYP peripheral in AES CBC encryption mode |
||
387 | * then encrypt pPlainData. The cypher data are available in pCypherData |
||
388 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
389 | * the configuration information for CRYP module |
||
390 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
391 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
392 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
393 | * @param Timeout Specify Timeout value |
||
394 | * @retval HAL status |
||
395 | */ |
||
396 | HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) |
||
397 | { |
||
398 | /* Process Locked */ |
||
399 | __HAL_LOCK(hcryp); |
||
400 | |||
401 | /* Check that data aligned on u32 */ |
||
402 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
403 | { |
||
404 | /* Process Locked */ |
||
405 | __HAL_UNLOCK(hcryp); |
||
406 | |||
407 | /* Return function status */ |
||
408 | return HAL_ERROR; |
||
409 | } |
||
410 | |||
411 | /* Check if HAL_CRYP_Init has been called */ |
||
412 | if(hcryp->State != HAL_CRYP_STATE_RESET) |
||
413 | { |
||
414 | /* Change the CRYP state */ |
||
415 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
416 | |||
417 | /* Check if initialization phase has already been performed */ |
||
418 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
419 | { |
||
420 | /* Set the key */ |
||
421 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
422 | |||
423 | /* Reset the CHMOD & MODE bits */ |
||
424 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
425 | |||
426 | /* Set the CRYP peripheral in AES CBC mode */ |
||
427 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT); |
||
428 | |||
429 | /* Set the Initialization Vector */ |
||
430 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
431 | |||
432 | /* Enable CRYP */ |
||
433 | __HAL_CRYP_ENABLE(hcryp); |
||
434 | |||
435 | /* Set the phase */ |
||
436 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
437 | } |
||
438 | |||
439 | /* Write Plain Data and Get Cypher Data */ |
||
440 | if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) |
||
441 | { |
||
442 | return HAL_TIMEOUT; |
||
443 | } |
||
444 | |||
445 | /* Change the CRYP state */ |
||
446 | hcryp->State = HAL_CRYP_STATE_READY; |
||
447 | |||
448 | /* Process Unlocked */ |
||
449 | __HAL_UNLOCK(hcryp); |
||
450 | |||
451 | /* Return function status */ |
||
452 | return HAL_OK; |
||
453 | } |
||
454 | else |
||
455 | { |
||
456 | /* Process Locked */ |
||
457 | __HAL_UNLOCK(hcryp); |
||
458 | |||
459 | /* Return function status */ |
||
460 | return HAL_ERROR; |
||
461 | } |
||
462 | } |
||
463 | |||
464 | /** |
||
465 | * @brief Initializes the CRYP peripheral in AES CTR encryption mode |
||
466 | * then encrypt pPlainData. The cypher data are available in pCypherData |
||
467 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
468 | * the configuration information for CRYP module |
||
469 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
470 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
471 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
472 | * @param Timeout Specify Timeout value |
||
473 | * @retval HAL status |
||
474 | */ |
||
475 | HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) |
||
476 | { |
||
477 | /* Process Locked */ |
||
478 | __HAL_LOCK(hcryp); |
||
479 | |||
480 | /* Check that data aligned on u32 */ |
||
481 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
482 | { |
||
483 | /* Process Locked */ |
||
484 | __HAL_UNLOCK(hcryp); |
||
485 | |||
486 | /* Return function status */ |
||
487 | return HAL_ERROR; |
||
488 | } |
||
489 | |||
490 | /* Check if HAL_CRYP_Init has been called */ |
||
491 | if(hcryp->State != HAL_CRYP_STATE_RESET) |
||
492 | { |
||
493 | /* Change the CRYP state */ |
||
494 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
495 | |||
496 | /* Check if initialization phase has already been performed */ |
||
497 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
498 | { |
||
499 | /* Set the key */ |
||
500 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
501 | |||
502 | /* Reset the CHMOD & MODE bits */ |
||
503 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
504 | |||
505 | /* Set the CRYP peripheral in AES CTR mode */ |
||
506 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT); |
||
507 | |||
508 | /* Set the Initialization Vector */ |
||
509 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
510 | |||
511 | /* Enable CRYP */ |
||
512 | __HAL_CRYP_ENABLE(hcryp); |
||
513 | |||
514 | /* Set the phase */ |
||
515 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
516 | } |
||
517 | |||
518 | /* Write Plain Data and Get Cypher Data */ |
||
519 | if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) |
||
520 | { |
||
521 | return HAL_TIMEOUT; |
||
522 | } |
||
523 | |||
524 | /* Change the CRYP state */ |
||
525 | hcryp->State = HAL_CRYP_STATE_READY; |
||
526 | |||
527 | /* Process Unlocked */ |
||
528 | __HAL_UNLOCK(hcryp); |
||
529 | |||
530 | /* Return function status */ |
||
531 | return HAL_OK; |
||
532 | } |
||
533 | else |
||
534 | { |
||
535 | /* Release Lock */ |
||
536 | __HAL_UNLOCK(hcryp); |
||
537 | |||
538 | /* Return function status */ |
||
539 | return HAL_ERROR; |
||
540 | } |
||
541 | } |
||
542 | |||
543 | /** |
||
544 | * @brief Initializes the CRYP peripheral in AES ECB decryption mode |
||
545 | * then decrypted pCypherData. The cypher data are available in pPlainData |
||
546 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
547 | * the configuration information for CRYP module |
||
548 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
549 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
550 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
551 | * @param Timeout Specify Timeout value |
||
552 | * @retval HAL status |
||
553 | */ |
||
554 | HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) |
||
555 | { |
||
556 | /* Process Locked */ |
||
557 | __HAL_LOCK(hcryp); |
||
558 | |||
559 | /* Check that data aligned on u32 */ |
||
560 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
561 | { |
||
562 | /* Process Locked */ |
||
563 | __HAL_UNLOCK(hcryp); |
||
564 | |||
565 | /* Return function status */ |
||
566 | return HAL_ERROR; |
||
567 | } |
||
568 | |||
569 | /* Check if HAL_CRYP_Init has been called */ |
||
570 | if(hcryp->State != HAL_CRYP_STATE_RESET) |
||
571 | { |
||
572 | /* Change the CRYP state */ |
||
573 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
574 | |||
575 | /* Check if initialization phase has already been performed */ |
||
576 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
577 | { |
||
578 | /* Set the key */ |
||
579 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
580 | |||
581 | /* Reset the CHMOD & MODE bits */ |
||
582 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
583 | |||
584 | /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */ |
||
585 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT); |
||
586 | |||
587 | /* Enable CRYP */ |
||
588 | __HAL_CRYP_ENABLE(hcryp); |
||
589 | |||
590 | /* Set the phase */ |
||
591 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
592 | } |
||
593 | |||
594 | /* Write Cypher Data and Get Plain Data */ |
||
595 | if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) |
||
596 | { |
||
597 | return HAL_TIMEOUT; |
||
598 | } |
||
599 | |||
600 | /* Change the CRYP state */ |
||
601 | hcryp->State = HAL_CRYP_STATE_READY; |
||
602 | |||
603 | /* Process Unlocked */ |
||
604 | __HAL_UNLOCK(hcryp); |
||
605 | |||
606 | /* Return function status */ |
||
607 | return HAL_OK; |
||
608 | } |
||
609 | else |
||
610 | { |
||
611 | /* Release Lock */ |
||
612 | __HAL_UNLOCK(hcryp); |
||
613 | |||
614 | /* Return function status */ |
||
615 | return HAL_ERROR; |
||
616 | } |
||
617 | } |
||
618 | |||
619 | /** |
||
620 | * @brief Initializes the CRYP peripheral in AES ECB decryption mode |
||
621 | * then decrypted pCypherData. The cypher data are available in pPlainData |
||
622 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
623 | * the configuration information for CRYP module |
||
624 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
625 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
626 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
627 | * @param Timeout Specify Timeout value |
||
628 | * @retval HAL status |
||
629 | */ |
||
630 | HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) |
||
631 | { |
||
632 | /* Process Locked */ |
||
633 | __HAL_LOCK(hcryp); |
||
634 | |||
635 | /* Check that data aligned on u32 */ |
||
636 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
637 | { |
||
638 | /* Process Locked */ |
||
639 | __HAL_UNLOCK(hcryp); |
||
640 | |||
641 | /* Return function status */ |
||
642 | return HAL_ERROR; |
||
643 | } |
||
644 | |||
645 | /* Check if HAL_CRYP_Init has been called */ |
||
646 | if(hcryp->State != HAL_CRYP_STATE_RESET) |
||
647 | { |
||
648 | /* Change the CRYP state */ |
||
649 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
650 | |||
651 | /* Check if initialization phase has already been performed */ |
||
652 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
653 | { |
||
654 | /* Set the key */ |
||
655 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
656 | |||
657 | /* Reset the CHMOD & MODE bits */ |
||
658 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
659 | |||
660 | /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */ |
||
661 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT); |
||
662 | |||
663 | /* Set the Initialization Vector */ |
||
664 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
665 | |||
666 | /* Enable CRYP */ |
||
667 | __HAL_CRYP_ENABLE(hcryp); |
||
668 | |||
669 | /* Set the phase */ |
||
670 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
671 | } |
||
672 | |||
673 | /* Write Cypher Data and Get Plain Data */ |
||
674 | if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) |
||
675 | { |
||
676 | return HAL_TIMEOUT; |
||
677 | } |
||
678 | |||
679 | /* Change the CRYP state */ |
||
680 | hcryp->State = HAL_CRYP_STATE_READY; |
||
681 | |||
682 | /* Process Unlocked */ |
||
683 | __HAL_UNLOCK(hcryp); |
||
684 | |||
685 | /* Return function status */ |
||
686 | return HAL_OK; |
||
687 | } |
||
688 | else |
||
689 | { |
||
690 | /* Release Lock */ |
||
691 | __HAL_UNLOCK(hcryp); |
||
692 | |||
693 | /* Return function status */ |
||
694 | return HAL_ERROR; |
||
695 | } |
||
696 | } |
||
697 | |||
698 | /** |
||
699 | * @brief Initializes the CRYP peripheral in AES CTR decryption mode |
||
700 | * then decrypted pCypherData. The cypher data are available in pPlainData |
||
701 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
702 | * the configuration information for CRYP module |
||
703 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
704 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
705 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
706 | * @param Timeout Specify Timeout value |
||
707 | * @retval HAL status |
||
708 | */ |
||
709 | HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) |
||
710 | { |
||
711 | /* Process Locked */ |
||
712 | __HAL_LOCK(hcryp); |
||
713 | |||
714 | /* Check that data aligned on u32 */ |
||
715 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
716 | { |
||
717 | /* Process Locked */ |
||
718 | __HAL_UNLOCK(hcryp); |
||
719 | |||
720 | /* Return function status */ |
||
721 | return HAL_ERROR; |
||
722 | } |
||
723 | |||
724 | /* Check if initialization phase has already been performed */ |
||
725 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->Phase == HAL_CRYP_PHASE_READY)) |
||
726 | { |
||
727 | /* Change the CRYP state */ |
||
728 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
729 | |||
730 | /* Set the key */ |
||
731 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
732 | |||
733 | /* Reset the CHMOD & MODE bits */ |
||
734 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
735 | |||
736 | /* Set the CRYP peripheral in AES CTR decryption mode */ |
||
737 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT); |
||
738 | |||
739 | /* Set the Initialization Vector */ |
||
740 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
741 | |||
742 | /* Enable CRYP */ |
||
743 | __HAL_CRYP_ENABLE(hcryp); |
||
744 | |||
745 | /* Set the phase */ |
||
746 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
747 | } |
||
748 | |||
749 | /* Write Cypher Data and Get Plain Data */ |
||
750 | if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) |
||
751 | { |
||
752 | return HAL_TIMEOUT; |
||
753 | } |
||
754 | |||
755 | /* Change the CRYP state */ |
||
756 | hcryp->State = HAL_CRYP_STATE_READY; |
||
757 | |||
758 | /* Process Unlocked */ |
||
759 | __HAL_UNLOCK(hcryp); |
||
760 | |||
761 | /* Return function status */ |
||
762 | return HAL_OK; |
||
763 | } |
||
764 | |||
765 | /** |
||
766 | * @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt. |
||
767 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
768 | * the configuration information for CRYP module |
||
769 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
770 | * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes |
||
771 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
772 | * @retval HAL status |
||
773 | */ |
||
774 | HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) |
||
775 | { |
||
776 | uint32_t inputaddr = 0; |
||
777 | |||
778 | /* Check that data aligned on u32 */ |
||
779 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
780 | { |
||
781 | /* Process Locked */ |
||
782 | __HAL_UNLOCK(hcryp); |
||
783 | |||
784 | /* Return function status */ |
||
785 | return HAL_ERROR; |
||
786 | } |
||
787 | |||
788 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
789 | { |
||
790 | /* Process Locked */ |
||
791 | __HAL_LOCK(hcryp); |
||
792 | |||
793 | /* Get the buffer addresses and sizes */ |
||
794 | hcryp->CrypInCount = Size; |
||
795 | hcryp->pCrypInBuffPtr = pPlainData; |
||
796 | hcryp->pCrypOutBuffPtr = pCypherData; |
||
797 | hcryp->CrypOutCount = Size; |
||
798 | |||
799 | /* Change the CRYP state */ |
||
800 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
801 | |||
802 | /* Check if initialization phase has already been performed */ |
||
803 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
804 | { |
||
805 | /* Set the key */ |
||
806 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
807 | |||
808 | /* Reset the CHMOD & MODE bits */ |
||
809 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
810 | |||
811 | /* Set the CRYP peripheral in AES ECB mode */ |
||
812 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT); |
||
813 | |||
814 | /* Set the phase */ |
||
815 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
816 | } |
||
817 | |||
818 | /* Enable Interrupts */ |
||
819 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); |
||
820 | |||
821 | /* Enable CRYP */ |
||
822 | __HAL_CRYP_ENABLE(hcryp); |
||
823 | |||
824 | /* Get the last input data address */ |
||
825 | inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; |
||
826 | |||
827 | /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
||
828 | when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
||
829 | and it is ready for the next operation. */ |
||
830 | hcryp->pCrypInBuffPtr += 16U; |
||
831 | hcryp->CrypInCount -= 16U; |
||
832 | |||
833 | /* Write the Input block in the Data Input register */ |
||
834 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
835 | inputaddr+=4; |
||
836 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
837 | inputaddr+=4; |
||
838 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
839 | inputaddr+=4; |
||
840 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
841 | |||
842 | /* Return function status */ |
||
843 | return HAL_OK; |
||
844 | } |
||
845 | else |
||
846 | { |
||
847 | /* Release Lock */ |
||
848 | __HAL_UNLOCK(hcryp); |
||
849 | |||
850 | /* Return function status */ |
||
851 | return HAL_ERROR; |
||
852 | } |
||
853 | } |
||
854 | |||
855 | /** |
||
856 | * @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt. |
||
857 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
858 | * the configuration information for CRYP module |
||
859 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
860 | * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes |
||
861 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
862 | * @retval HAL status |
||
863 | */ |
||
864 | HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) |
||
865 | { |
||
866 | uint32_t inputaddr = 0; |
||
867 | |||
868 | /* Check that data aligned on u32 */ |
||
869 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
870 | { |
||
871 | /* Process Locked */ |
||
872 | __HAL_UNLOCK(hcryp); |
||
873 | |||
874 | /* Return function status */ |
||
875 | return HAL_ERROR; |
||
876 | } |
||
877 | |||
878 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
879 | { |
||
880 | /* Process Locked */ |
||
881 | __HAL_LOCK(hcryp); |
||
882 | |||
883 | /* Get the buffer addresses and sizes */ |
||
884 | hcryp->CrypInCount = Size; |
||
885 | hcryp->pCrypInBuffPtr = pPlainData; |
||
886 | hcryp->pCrypOutBuffPtr = pCypherData; |
||
887 | hcryp->CrypOutCount = Size; |
||
888 | |||
889 | /* Change the CRYP state */ |
||
890 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
891 | |||
892 | /* Check if initialization phase has already been performed */ |
||
893 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
894 | { |
||
895 | /* Set the key */ |
||
896 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
897 | |||
898 | /* Reset the CHMOD & MODE bits */ |
||
899 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
900 | |||
901 | /* Set the CRYP peripheral in AES CBC mode */ |
||
902 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT); |
||
903 | |||
904 | /* Set the Initialization Vector */ |
||
905 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
906 | |||
907 | /* Set the phase */ |
||
908 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
909 | } |
||
910 | |||
911 | /* Enable Interrupts */ |
||
912 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); |
||
913 | |||
914 | /* Enable CRYP */ |
||
915 | __HAL_CRYP_ENABLE(hcryp); |
||
916 | |||
917 | /* Get the last input data address */ |
||
918 | inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; |
||
919 | |||
920 | /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
||
921 | when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
||
922 | and it is ready for the next operation. */ |
||
923 | hcryp->pCrypInBuffPtr += 16U; |
||
924 | hcryp->CrypInCount -= 16U; |
||
925 | |||
926 | /* Write the Input block in the Data Input register */ |
||
927 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
928 | inputaddr+=4; |
||
929 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
930 | inputaddr+=4; |
||
931 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
932 | inputaddr+=4; |
||
933 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
934 | |||
935 | /* Return function status */ |
||
936 | return HAL_OK; |
||
937 | } |
||
938 | else |
||
939 | { |
||
940 | /* Release Lock */ |
||
941 | __HAL_UNLOCK(hcryp); |
||
942 | |||
943 | /* Return function status */ |
||
944 | return HAL_ERROR; |
||
945 | } |
||
946 | } |
||
947 | |||
948 | /** |
||
949 | * @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt. |
||
950 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
951 | * the configuration information for CRYP module |
||
952 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
953 | * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes |
||
954 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
955 | * @retval HAL status |
||
956 | */ |
||
957 | HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) |
||
958 | { |
||
959 | uint32_t inputaddr = 0; |
||
960 | |||
961 | /* Check that data aligned on u32 */ |
||
962 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
963 | { |
||
964 | /* Process Locked */ |
||
965 | __HAL_UNLOCK(hcryp); |
||
966 | |||
967 | /* Return function status */ |
||
968 | return HAL_ERROR; |
||
969 | } |
||
970 | |||
971 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
972 | { |
||
973 | /* Process Locked */ |
||
974 | __HAL_LOCK(hcryp); |
||
975 | |||
976 | /* Get the buffer addresses and sizes */ |
||
977 | hcryp->CrypInCount = Size; |
||
978 | hcryp->pCrypInBuffPtr = pPlainData; |
||
979 | hcryp->pCrypOutBuffPtr = pCypherData; |
||
980 | hcryp->CrypOutCount = Size; |
||
981 | |||
982 | /* Change the CRYP state */ |
||
983 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
984 | |||
985 | /* Check if initialization phase has already been performed */ |
||
986 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
987 | { |
||
988 | /* Set the key */ |
||
989 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
990 | |||
991 | /* Reset the CHMOD & MODE bits */ |
||
992 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
993 | |||
994 | /* Set the CRYP peripheral in AES CTR mode */ |
||
995 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT); |
||
996 | |||
997 | /* Set the Initialization Vector */ |
||
998 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
999 | |||
1000 | /* Set the phase */ |
||
1001 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1002 | } |
||
1003 | |||
1004 | /* Enable Interrupts */ |
||
1005 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); |
||
1006 | |||
1007 | /* Enable CRYP */ |
||
1008 | __HAL_CRYP_ENABLE(hcryp); |
||
1009 | |||
1010 | /* Get the last input data address */ |
||
1011 | inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; |
||
1012 | |||
1013 | /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
||
1014 | when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
||
1015 | and it is ready for the next operation. */ |
||
1016 | hcryp->pCrypInBuffPtr += 16U; |
||
1017 | hcryp->CrypInCount -= 16U; |
||
1018 | |||
1019 | /* Write the Input block in the Data Input register */ |
||
1020 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1021 | inputaddr+=4; |
||
1022 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1023 | inputaddr+=4; |
||
1024 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1025 | inputaddr+=4; |
||
1026 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1027 | |||
1028 | /* Return function status */ |
||
1029 | return HAL_OK; |
||
1030 | } |
||
1031 | else |
||
1032 | { |
||
1033 | /* Release Lock */ |
||
1034 | __HAL_UNLOCK(hcryp); |
||
1035 | |||
1036 | /* Return function status */ |
||
1037 | return HAL_ERROR; |
||
1038 | } |
||
1039 | } |
||
1040 | |||
1041 | /** |
||
1042 | * @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt. |
||
1043 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1044 | * the configuration information for CRYP module |
||
1045 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1046 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
1047 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1048 | * @retval HAL status |
||
1049 | */ |
||
1050 | HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) |
||
1051 | { |
||
1052 | uint32_t inputaddr = 0; |
||
1053 | |||
1054 | /* Check that data aligned on u32 */ |
||
1055 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1056 | { |
||
1057 | /* Process Locked */ |
||
1058 | __HAL_UNLOCK(hcryp); |
||
1059 | |||
1060 | /* Return function status */ |
||
1061 | return HAL_ERROR; |
||
1062 | } |
||
1063 | |||
1064 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1065 | { |
||
1066 | /* Process Locked */ |
||
1067 | __HAL_LOCK(hcryp); |
||
1068 | |||
1069 | /* Get the buffer addresses and sizes */ |
||
1070 | hcryp->CrypInCount = Size; |
||
1071 | hcryp->pCrypInBuffPtr = pCypherData; |
||
1072 | hcryp->pCrypOutBuffPtr = pPlainData; |
||
1073 | hcryp->CrypOutCount = Size; |
||
1074 | |||
1075 | /* Change the CRYP state */ |
||
1076 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1077 | |||
1078 | /* Check if initialization phase has already been performed */ |
||
1079 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1080 | { |
||
1081 | /* Set the key */ |
||
1082 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1083 | |||
1084 | /* Reset the CHMOD & MODE bits */ |
||
1085 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
1086 | |||
1087 | /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */ |
||
1088 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT); |
||
1089 | |||
1090 | /* Set the phase */ |
||
1091 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1092 | } |
||
1093 | |||
1094 | /* Enable Interrupts */ |
||
1095 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); |
||
1096 | |||
1097 | /* Enable CRYP */ |
||
1098 | __HAL_CRYP_ENABLE(hcryp); |
||
1099 | |||
1100 | /* Get the last input data address */ |
||
1101 | inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; |
||
1102 | |||
1103 | /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
||
1104 | when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
||
1105 | and it is ready for the next operation. */ |
||
1106 | hcryp->pCrypInBuffPtr += 16U; |
||
1107 | hcryp->CrypInCount -= 16U; |
||
1108 | |||
1109 | /* Write the Input block in the Data Input register */ |
||
1110 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1111 | inputaddr+=4; |
||
1112 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1113 | inputaddr+=4; |
||
1114 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1115 | inputaddr+=4; |
||
1116 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1117 | |||
1118 | /* Return function status */ |
||
1119 | return HAL_OK; |
||
1120 | } |
||
1121 | else |
||
1122 | { |
||
1123 | /* Release Lock */ |
||
1124 | __HAL_UNLOCK(hcryp); |
||
1125 | |||
1126 | /* Return function status */ |
||
1127 | return HAL_ERROR; |
||
1128 | } |
||
1129 | } |
||
1130 | |||
1131 | /** |
||
1132 | * @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT. |
||
1133 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1134 | * the configuration information for CRYP module |
||
1135 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1136 | * @param Size Length of the plaintext buffer, must be a multiple of 16 |
||
1137 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1138 | * @retval HAL status |
||
1139 | */ |
||
1140 | HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) |
||
1141 | { |
||
1142 | uint32_t inputaddr = 0; |
||
1143 | |||
1144 | /* Check that data aligned on u32 */ |
||
1145 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1146 | { |
||
1147 | /* Process Locked */ |
||
1148 | __HAL_UNLOCK(hcryp); |
||
1149 | |||
1150 | /* Return function status */ |
||
1151 | return HAL_ERROR; |
||
1152 | } |
||
1153 | |||
1154 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1155 | { |
||
1156 | /* Process Locked */ |
||
1157 | __HAL_LOCK(hcryp); |
||
1158 | |||
1159 | /* Get the buffer addresses and sizes */ |
||
1160 | hcryp->CrypInCount = Size; |
||
1161 | hcryp->pCrypInBuffPtr = pCypherData; |
||
1162 | hcryp->pCrypOutBuffPtr = pPlainData; |
||
1163 | hcryp->CrypOutCount = Size; |
||
1164 | |||
1165 | /* Change the CRYP state */ |
||
1166 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1167 | |||
1168 | /* Check if initialization phase has already been performed */ |
||
1169 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1170 | { |
||
1171 | /* Set the key */ |
||
1172 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1173 | |||
1174 | /* Reset the CHMOD & MODE bits */ |
||
1175 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
1176 | |||
1177 | /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */ |
||
1178 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT); |
||
1179 | |||
1180 | /* Set the Initialization Vector */ |
||
1181 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
1182 | |||
1183 | /* Set the phase */ |
||
1184 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1185 | } |
||
1186 | |||
1187 | /* Enable Interrupts */ |
||
1188 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); |
||
1189 | |||
1190 | /* Enable CRYP */ |
||
1191 | __HAL_CRYP_ENABLE(hcryp); |
||
1192 | |||
1193 | /* Get the last input data address */ |
||
1194 | inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; |
||
1195 | |||
1196 | /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
||
1197 | when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
||
1198 | and it is ready for the next operation. */ |
||
1199 | hcryp->pCrypInBuffPtr += 16U; |
||
1200 | hcryp->CrypInCount -= 16U; |
||
1201 | |||
1202 | /* Write the Input block in the Data Input register */ |
||
1203 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1204 | inputaddr+=4; |
||
1205 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1206 | inputaddr+=4; |
||
1207 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1208 | inputaddr+=4; |
||
1209 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1210 | |||
1211 | /* Return function status */ |
||
1212 | return HAL_OK; |
||
1213 | } |
||
1214 | else |
||
1215 | { |
||
1216 | /* Release Lock */ |
||
1217 | __HAL_UNLOCK(hcryp); |
||
1218 | |||
1219 | /* Return function status */ |
||
1220 | return HAL_ERROR; |
||
1221 | } |
||
1222 | } |
||
1223 | |||
1224 | /** |
||
1225 | * @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt. |
||
1226 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1227 | * the configuration information for CRYP module |
||
1228 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1229 | * @param Size Length of the plaintext buffer, must be a multiple of 16 |
||
1230 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1231 | * @retval HAL status |
||
1232 | */ |
||
1233 | HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) |
||
1234 | { |
||
1235 | uint32_t inputaddr = 0; |
||
1236 | |||
1237 | /* Check that data aligned on u32 */ |
||
1238 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1239 | { |
||
1240 | /* Process Locked */ |
||
1241 | __HAL_UNLOCK(hcryp); |
||
1242 | |||
1243 | /* Return function status */ |
||
1244 | return HAL_ERROR; |
||
1245 | } |
||
1246 | |||
1247 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1248 | { |
||
1249 | /* Process Locked */ |
||
1250 | __HAL_LOCK(hcryp); |
||
1251 | |||
1252 | /* Get the buffer addresses and sizes */ |
||
1253 | hcryp->CrypInCount = Size; |
||
1254 | hcryp->pCrypInBuffPtr = pCypherData; |
||
1255 | hcryp->pCrypOutBuffPtr = pPlainData; |
||
1256 | hcryp->CrypOutCount = Size; |
||
1257 | |||
1258 | /* Change the CRYP state */ |
||
1259 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1260 | |||
1261 | /* Check if initialization phase has already been performed */ |
||
1262 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1263 | { |
||
1264 | /* Set the key */ |
||
1265 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1266 | |||
1267 | /* Reset the CHMOD & MODE bits */ |
||
1268 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
1269 | |||
1270 | /* Set the CRYP peripheral in AES CTR decryption mode */ |
||
1271 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT); |
||
1272 | |||
1273 | /* Set the Initialization Vector */ |
||
1274 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
1275 | |||
1276 | /* Set the phase */ |
||
1277 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1278 | } |
||
1279 | |||
1280 | /* Enable Interrupts */ |
||
1281 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC); |
||
1282 | |||
1283 | /* Enable CRYP */ |
||
1284 | __HAL_CRYP_ENABLE(hcryp); |
||
1285 | |||
1286 | /* Get the last input data address */ |
||
1287 | inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; |
||
1288 | |||
1289 | /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
||
1290 | when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
||
1291 | and it is ready for the next operation. */ |
||
1292 | hcryp->pCrypInBuffPtr += 16U; |
||
1293 | hcryp->CrypInCount -= 16U; |
||
1294 | |||
1295 | /* Write the Input block in the Data Input register */ |
||
1296 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1297 | inputaddr+=4; |
||
1298 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1299 | inputaddr+=4; |
||
1300 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1301 | inputaddr+=4; |
||
1302 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1303 | |||
1304 | /* Return function status */ |
||
1305 | return HAL_OK; |
||
1306 | } |
||
1307 | else |
||
1308 | { |
||
1309 | /* Release Lock */ |
||
1310 | __HAL_UNLOCK(hcryp); |
||
1311 | |||
1312 | /* Return function status */ |
||
1313 | return HAL_ERROR; |
||
1314 | } |
||
1315 | } |
||
1316 | |||
1317 | /** |
||
1318 | * @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA. |
||
1319 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1320 | * the configuration information for CRYP module |
||
1321 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1322 | * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes |
||
1323 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1324 | * @retval HAL status |
||
1325 | */ |
||
1326 | HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) |
||
1327 | { |
||
1328 | uint32_t inputaddr = 0, outputaddr = 0; |
||
1329 | |||
1330 | /* Check that data aligned on u32 */ |
||
1331 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1332 | { |
||
1333 | /* Process Locked */ |
||
1334 | __HAL_UNLOCK(hcryp); |
||
1335 | |||
1336 | /* Return function status */ |
||
1337 | return HAL_ERROR; |
||
1338 | } |
||
1339 | |||
1340 | /* Check if HAL_CRYP_Init has been called */ |
||
1341 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1342 | { |
||
1343 | /* Process Locked */ |
||
1344 | __HAL_LOCK(hcryp); |
||
1345 | |||
1346 | inputaddr = (uint32_t)pPlainData; |
||
1347 | outputaddr = (uint32_t)pCypherData; |
||
1348 | |||
1349 | /* Change the CRYP state */ |
||
1350 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1351 | |||
1352 | /* Check if initialization phase has already been performed */ |
||
1353 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1354 | { |
||
1355 | /* Set the key */ |
||
1356 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1357 | |||
1358 | /* Set the CRYP peripheral in AES ECB mode */ |
||
1359 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT); |
||
1360 | |||
1361 | /* Set the phase */ |
||
1362 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1363 | } |
||
1364 | /* Set the input and output addresses and start DMA transfer */ |
||
1365 | CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); |
||
1366 | |||
1367 | /* Process Unlocked */ |
||
1368 | __HAL_UNLOCK(hcryp); |
||
1369 | |||
1370 | /* Return function status */ |
||
1371 | return HAL_OK; |
||
1372 | } |
||
1373 | else |
||
1374 | { |
||
1375 | /* Release Lock */ |
||
1376 | __HAL_UNLOCK(hcryp); |
||
1377 | |||
1378 | return HAL_ERROR; |
||
1379 | } |
||
1380 | } |
||
1381 | |||
1382 | /** |
||
1383 | * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. |
||
1384 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1385 | * the configuration information for CRYP module |
||
1386 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1387 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
1388 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1389 | * @retval HAL status |
||
1390 | */ |
||
1391 | HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) |
||
1392 | { |
||
1393 | uint32_t inputaddr = 0, outputaddr = 0; |
||
1394 | |||
1395 | /* Check that data aligned on u32 */ |
||
1396 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1397 | { |
||
1398 | /* Process Locked */ |
||
1399 | __HAL_UNLOCK(hcryp); |
||
1400 | |||
1401 | /* Return function status */ |
||
1402 | return HAL_ERROR; |
||
1403 | } |
||
1404 | |||
1405 | /* Check if HAL_CRYP_Init has been called */ |
||
1406 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1407 | { |
||
1408 | /* Process Locked */ |
||
1409 | __HAL_LOCK(hcryp); |
||
1410 | |||
1411 | inputaddr = (uint32_t)pPlainData; |
||
1412 | outputaddr = (uint32_t)pCypherData; |
||
1413 | |||
1414 | /* Change the CRYP state */ |
||
1415 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1416 | |||
1417 | /* Check if initialization phase has already been performed */ |
||
1418 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1419 | { |
||
1420 | /* Set the key */ |
||
1421 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1422 | |||
1423 | /* Set the CRYP peripheral in AES CBC mode */ |
||
1424 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT); |
||
1425 | |||
1426 | /* Set the Initialization Vector */ |
||
1427 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
1428 | |||
1429 | /* Set the phase */ |
||
1430 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1431 | } |
||
1432 | /* Set the input and output addresses and start DMA transfer */ |
||
1433 | CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); |
||
1434 | |||
1435 | /* Process Unlocked */ |
||
1436 | __HAL_UNLOCK(hcryp); |
||
1437 | |||
1438 | /* Return function status */ |
||
1439 | return HAL_OK; |
||
1440 | } |
||
1441 | else |
||
1442 | { |
||
1443 | /* Release Lock */ |
||
1444 | __HAL_UNLOCK(hcryp); |
||
1445 | |||
1446 | return HAL_ERROR; |
||
1447 | } |
||
1448 | } |
||
1449 | |||
1450 | /** |
||
1451 | * @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA. |
||
1452 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1453 | * the configuration information for CRYP module |
||
1454 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1455 | * @param Size Length of the plaintext buffer, must be a multiple of 16. |
||
1456 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1457 | * @retval HAL status |
||
1458 | */ |
||
1459 | HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) |
||
1460 | { |
||
1461 | uint32_t inputaddr = 0, outputaddr = 0; |
||
1462 | |||
1463 | /* Check that data aligned on u32 */ |
||
1464 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1465 | { |
||
1466 | /* Process Locked */ |
||
1467 | __HAL_UNLOCK(hcryp); |
||
1468 | |||
1469 | /* Return function status */ |
||
1470 | return HAL_ERROR; |
||
1471 | } |
||
1472 | |||
1473 | /* Check if HAL_CRYP_Init has been called */ |
||
1474 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1475 | { |
||
1476 | /* Process Locked */ |
||
1477 | __HAL_LOCK(hcryp); |
||
1478 | |||
1479 | inputaddr = (uint32_t)pPlainData; |
||
1480 | outputaddr = (uint32_t)pCypherData; |
||
1481 | |||
1482 | /* Change the CRYP state */ |
||
1483 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1484 | |||
1485 | /* Check if initialization phase has already been performed */ |
||
1486 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1487 | { |
||
1488 | /* Set the key */ |
||
1489 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1490 | |||
1491 | /* Set the CRYP peripheral in AES CTR mode */ |
||
1492 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT); |
||
1493 | |||
1494 | /* Set the Initialization Vector */ |
||
1495 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
1496 | |||
1497 | /* Set the phase */ |
||
1498 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1499 | } |
||
1500 | |||
1501 | /* Set the input and output addresses and start DMA transfer */ |
||
1502 | CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); |
||
1503 | |||
1504 | /* Process Unlocked */ |
||
1505 | __HAL_UNLOCK(hcryp); |
||
1506 | |||
1507 | /* Return function status */ |
||
1508 | return HAL_OK; |
||
1509 | } |
||
1510 | else |
||
1511 | { |
||
1512 | /* Release Lock */ |
||
1513 | __HAL_UNLOCK(hcryp); |
||
1514 | |||
1515 | return HAL_ERROR; |
||
1516 | } |
||
1517 | } |
||
1518 | |||
1519 | /** |
||
1520 | * @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA. |
||
1521 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1522 | * the configuration information for CRYP module |
||
1523 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1524 | * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes |
||
1525 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1526 | * @retval HAL status |
||
1527 | */ |
||
1528 | HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) |
||
1529 | { |
||
1530 | uint32_t inputaddr = 0, outputaddr = 0; |
||
1531 | |||
1532 | /* Check that data aligned on u32 */ |
||
1533 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1534 | { |
||
1535 | /* Process Locked */ |
||
1536 | __HAL_UNLOCK(hcryp); |
||
1537 | |||
1538 | /* Return function status */ |
||
1539 | return HAL_ERROR; |
||
1540 | } |
||
1541 | |||
1542 | /* Check if HAL_CRYP_Init has been called */ |
||
1543 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1544 | { |
||
1545 | /* Process Locked */ |
||
1546 | __HAL_LOCK(hcryp); |
||
1547 | |||
1548 | inputaddr = (uint32_t)pCypherData; |
||
1549 | outputaddr = (uint32_t)pPlainData; |
||
1550 | |||
1551 | /* Change the CRYP state */ |
||
1552 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1553 | |||
1554 | /* Check if initialization phase has already been performed */ |
||
1555 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1556 | { |
||
1557 | /* Set the key */ |
||
1558 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1559 | |||
1560 | /* Reset the CHMOD & MODE bits */ |
||
1561 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
1562 | |||
1563 | /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */ |
||
1564 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT); |
||
1565 | |||
1566 | /* Set the phase */ |
||
1567 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1568 | } |
||
1569 | |||
1570 | /* Set the input and output addresses and start DMA transfer */ |
||
1571 | CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); |
||
1572 | |||
1573 | /* Process Unlocked */ |
||
1574 | __HAL_UNLOCK(hcryp); |
||
1575 | |||
1576 | /* Return function status */ |
||
1577 | return HAL_OK; |
||
1578 | } |
||
1579 | else |
||
1580 | { |
||
1581 | /* Release Lock */ |
||
1582 | __HAL_UNLOCK(hcryp); |
||
1583 | |||
1584 | return HAL_ERROR; |
||
1585 | } |
||
1586 | } |
||
1587 | |||
1588 | /** |
||
1589 | * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. |
||
1590 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1591 | * the configuration information for CRYP module |
||
1592 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1593 | * @param Size Length of the plaintext buffer, must be a multiple of 16 bytes |
||
1594 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1595 | * @retval HAL status |
||
1596 | */ |
||
1597 | HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) |
||
1598 | { |
||
1599 | uint32_t inputaddr = 0, outputaddr = 0; |
||
1600 | |||
1601 | /* Check that data aligned on u32 */ |
||
1602 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1603 | { |
||
1604 | /* Process Locked */ |
||
1605 | __HAL_UNLOCK(hcryp); |
||
1606 | |||
1607 | /* Return function status */ |
||
1608 | return HAL_ERROR; |
||
1609 | } |
||
1610 | |||
1611 | /* Check if HAL_CRYP_Init has been called */ |
||
1612 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1613 | { |
||
1614 | /* Process Locked */ |
||
1615 | __HAL_LOCK(hcryp); |
||
1616 | |||
1617 | inputaddr = (uint32_t)pCypherData; |
||
1618 | outputaddr = (uint32_t)pPlainData; |
||
1619 | |||
1620 | /* Change the CRYP state */ |
||
1621 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1622 | |||
1623 | /* Check if initialization phase has already been performed */ |
||
1624 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1625 | { |
||
1626 | /* Set the key */ |
||
1627 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1628 | |||
1629 | /* Reset the CHMOD & MODE bits */ |
||
1630 | CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK); |
||
1631 | |||
1632 | /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */ |
||
1633 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT); |
||
1634 | |||
1635 | /* Set the Initialization Vector */ |
||
1636 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
1637 | |||
1638 | /* Set the phase */ |
||
1639 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1640 | } |
||
1641 | |||
1642 | /* Set the input and output addresses and start DMA transfer */ |
||
1643 | CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); |
||
1644 | |||
1645 | /* Process Unlocked */ |
||
1646 | __HAL_UNLOCK(hcryp); |
||
1647 | |||
1648 | /* Return function status */ |
||
1649 | return HAL_OK; |
||
1650 | } |
||
1651 | else |
||
1652 | { |
||
1653 | /* Release Lock */ |
||
1654 | __HAL_UNLOCK(hcryp); |
||
1655 | |||
1656 | return HAL_ERROR; |
||
1657 | } |
||
1658 | } |
||
1659 | |||
1660 | /** |
||
1661 | * @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA. |
||
1662 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1663 | * the configuration information for CRYP module |
||
1664 | * @param pCypherData Pointer to the cyphertext buffer (aligned on u32) |
||
1665 | * @param Size Length of the plaintext buffer, must be a multiple of 16 |
||
1666 | * @param pPlainData Pointer to the plaintext buffer (aligned on u32) |
||
1667 | * @retval HAL status |
||
1668 | */ |
||
1669 | HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) |
||
1670 | { |
||
1671 | uint32_t inputaddr = 0, outputaddr = 0; |
||
1672 | |||
1673 | /* Check that data aligned on u32 */ |
||
1674 | if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0)) |
||
1675 | { |
||
1676 | /* Process Locked */ |
||
1677 | __HAL_UNLOCK(hcryp); |
||
1678 | |||
1679 | /* Return function status */ |
||
1680 | return HAL_ERROR; |
||
1681 | } |
||
1682 | |||
1683 | /* Check if HAL_CRYP_Init has been called */ |
||
1684 | if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY)) |
||
1685 | { |
||
1686 | /* Process Locked */ |
||
1687 | __HAL_LOCK(hcryp); |
||
1688 | |||
1689 | inputaddr = (uint32_t)pCypherData; |
||
1690 | outputaddr = (uint32_t)pPlainData; |
||
1691 | |||
1692 | /* Change the CRYP state */ |
||
1693 | hcryp->State = HAL_CRYP_STATE_BUSY; |
||
1694 | |||
1695 | /* Check if initialization phase has already been performed */ |
||
1696 | if(hcryp->Phase == HAL_CRYP_PHASE_READY) |
||
1697 | { |
||
1698 | /* Set the key */ |
||
1699 | CRYP_SetKey(hcryp, hcryp->Init.pKey); |
||
1700 | |||
1701 | /* Set the CRYP peripheral in AES CTR mode */ |
||
1702 | __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT); |
||
1703 | |||
1704 | /* Set the Initialization Vector */ |
||
1705 | CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect); |
||
1706 | |||
1707 | /* Set the phase */ |
||
1708 | hcryp->Phase = HAL_CRYP_PHASE_PROCESS; |
||
1709 | } |
||
1710 | |||
1711 | /* Set the input and output addresses and start DMA transfer */ |
||
1712 | CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); |
||
1713 | |||
1714 | /* Process Unlocked */ |
||
1715 | __HAL_UNLOCK(hcryp); |
||
1716 | |||
1717 | /* Return function status */ |
||
1718 | return HAL_OK; |
||
1719 | } |
||
1720 | else |
||
1721 | { |
||
1722 | /* Release Lock */ |
||
1723 | __HAL_UNLOCK(hcryp); |
||
1724 | |||
1725 | return HAL_ERROR; |
||
1726 | } |
||
1727 | } |
||
1728 | |||
1729 | /** |
||
1730 | * @} |
||
1731 | */ |
||
1732 | |||
1733 | /** @defgroup CRYP_Exported_Functions_Group3 DMA callback functions |
||
1734 | * @brief DMA callback functions. |
||
1735 | * |
||
1736 | @verbatim |
||
1737 | ============================================================================== |
||
1738 | ##### DMA callback functions ##### |
||
1739 | ============================================================================== |
||
1740 | [..] This section provides DMA callback functions: |
||
1741 | (+) DMA Input data transfer complete |
||
1742 | (+) DMA Output data transfer complete |
||
1743 | (+) DMA error |
||
1744 | |||
1745 | @endverbatim |
||
1746 | * @{ |
||
1747 | */ |
||
1748 | |||
1749 | /** |
||
1750 | * @brief CRYP error callback. |
||
1751 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1752 | * the configuration information for CRYP module |
||
1753 | * @retval None |
||
1754 | */ |
||
1755 | __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) |
||
1756 | { |
||
1757 | /* Prevent unused argument(s) compilation warning */ |
||
1758 | UNUSED(hcryp); |
||
1759 | |||
1760 | /* NOTE : This function should not be modified; when the callback is needed, |
||
1761 | the HAL_CRYP_ErrorCallback can be implemented in the user file |
||
1762 | */ |
||
1763 | } |
||
1764 | |||
1765 | /** |
||
1766 | * @brief Input transfer completed callback. |
||
1767 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1768 | * the configuration information for CRYP module |
||
1769 | * @retval None |
||
1770 | */ |
||
1771 | __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) |
||
1772 | { |
||
1773 | /* Prevent unused argument(s) compilation warning */ |
||
1774 | UNUSED(hcryp); |
||
1775 | |||
1776 | /* NOTE : This function should not be modified; when the callback is needed, |
||
1777 | the HAL_CRYP_InCpltCallback can be implemented in the user file |
||
1778 | */ |
||
1779 | } |
||
1780 | |||
1781 | /** |
||
1782 | * @brief Output transfer completed callback. |
||
1783 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1784 | * the configuration information for CRYP module |
||
1785 | * @retval None |
||
1786 | */ |
||
1787 | __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) |
||
1788 | { |
||
1789 | /* Prevent unused argument(s) compilation warning */ |
||
1790 | UNUSED(hcryp); |
||
1791 | |||
1792 | /* NOTE : This function should not be modified; when the callback is needed, |
||
1793 | the HAL_CRYP_OutCpltCallback can be implemented in the user file |
||
1794 | */ |
||
1795 | } |
||
1796 | |||
1797 | /** |
||
1798 | * @} |
||
1799 | */ |
||
1800 | |||
1801 | /** @defgroup CRYP_Exported_Functions_Group4 CRYP IRQ handler |
||
1802 | * @brief CRYP IRQ handler. |
||
1803 | * |
||
1804 | @verbatim |
||
1805 | ============================================================================== |
||
1806 | ##### CRYP IRQ handler management ##### |
||
1807 | ============================================================================== |
||
1808 | [..] This section provides CRYP IRQ handler function. |
||
1809 | |||
1810 | @endverbatim |
||
1811 | * @{ |
||
1812 | */ |
||
1813 | |||
1814 | /** |
||
1815 | * @brief This function handles CRYP interrupt request. |
||
1816 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1817 | * the configuration information for CRYP module |
||
1818 | * @retval None |
||
1819 | */ |
||
1820 | void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) |
||
1821 | { |
||
1822 | /* Check if error occurred*/ |
||
1823 | if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_ERR) != RESET) |
||
1824 | { |
||
1825 | if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_RDERR) != RESET) |
||
1826 | { |
||
1827 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_RDERR); |
||
1828 | } |
||
1829 | |||
1830 | if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_WRERR) != RESET) |
||
1831 | { |
||
1832 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_WRERR); |
||
1833 | } |
||
1834 | |||
1835 | if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_FLAG_CCF) != RESET) |
||
1836 | { |
||
1837 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF); |
||
1838 | } |
||
1839 | |||
1840 | hcryp->State= HAL_CRYP_STATE_ERROR; |
||
1841 | /* Disable Computation Complete Interrupt */ |
||
1842 | __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CC); |
||
1843 | __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_ERR); |
||
1844 | |||
1845 | HAL_CRYP_ErrorCallback(hcryp); |
||
1846 | |||
1847 | /* Process Unlocked */ |
||
1848 | __HAL_UNLOCK(hcryp); |
||
1849 | |||
1850 | return; |
||
1851 | } |
||
1852 | |||
1853 | /* Check if computation complete interrupt was enabled*/ |
||
1854 | if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CC) != RESET) |
||
1855 | { |
||
1856 | /* Clear CCF Flag */ |
||
1857 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF); |
||
1858 | |||
1859 | CRYP_EncryptDecrypt_IT(hcryp); |
||
1860 | } |
||
1861 | } |
||
1862 | |||
1863 | /** |
||
1864 | * @} |
||
1865 | */ |
||
1866 | |||
1867 | /** @defgroup CRYP_Exported_Functions_Group5 Peripheral State functions |
||
1868 | * @brief Peripheral State functions. |
||
1869 | * |
||
1870 | @verbatim |
||
1871 | ============================================================================== |
||
1872 | ##### Peripheral State functions ##### |
||
1873 | ============================================================================== |
||
1874 | [..] |
||
1875 | This subsection permits to get in run-time the status of the peripheral. |
||
1876 | |||
1877 | @endverbatim |
||
1878 | * @{ |
||
1879 | */ |
||
1880 | |||
1881 | /** |
||
1882 | * @brief Returns the CRYP state. |
||
1883 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1884 | * the configuration information for CRYP module |
||
1885 | * @retval HAL state |
||
1886 | */ |
||
1887 | HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) |
||
1888 | { |
||
1889 | return hcryp->State; |
||
1890 | } |
||
1891 | |||
1892 | /** |
||
1893 | * @} |
||
1894 | */ |
||
1895 | |||
1896 | /** |
||
1897 | * @} |
||
1898 | */ |
||
1899 | |||
1900 | /** @addtogroup CRYP_Private_Functions |
||
1901 | * @{ |
||
1902 | */ |
||
1903 | |||
1904 | /** |
||
1905 | * @brief IT function called under interruption context to continue encryption or decryption |
||
1906 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
1907 | * the configuration information for CRYP module |
||
1908 | * @retval HAL status |
||
1909 | */ |
||
1910 | static HAL_StatusTypeDef CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp) |
||
1911 | { |
||
1912 | uint32_t inputaddr = 0, outputaddr = 0; |
||
1913 | |||
1914 | /* Get the last Output data address */ |
||
1915 | outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; |
||
1916 | |||
1917 | /* Read the Output block from the Output Register */ |
||
1918 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
1919 | outputaddr+=4; |
||
1920 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
1921 | outputaddr+=4; |
||
1922 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
1923 | outputaddr+=4; |
||
1924 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
1925 | |||
1926 | hcryp->pCrypOutBuffPtr += 16; |
||
1927 | hcryp->CrypOutCount -= 16; |
||
1928 | |||
1929 | /* Check if all input text is encrypted or decrypted */ |
||
1930 | if(hcryp->CrypOutCount == 0) |
||
1931 | { |
||
1932 | /* Disable Computation Complete Interrupt */ |
||
1933 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CC); |
||
1934 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_ERR); |
||
1935 | |||
1936 | /* Process Unlocked */ |
||
1937 | __HAL_UNLOCK(hcryp); |
||
1938 | |||
1939 | /* Change the CRYP state */ |
||
1940 | hcryp->State = HAL_CRYP_STATE_READY; |
||
1941 | |||
1942 | /* Call computation complete callback */ |
||
1943 | HAL_CRYPEx_ComputationCpltCallback(hcryp); |
||
1944 | } |
||
1945 | else /* Process the rest of input text */ |
||
1946 | { |
||
1947 | /* Get the last Input data address */ |
||
1948 | inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; |
||
1949 | |||
1950 | /* Increment the pointer before writing the input block in the IN FIFO to make sure that |
||
1951 | when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value |
||
1952 | and it is ready for the next operation. */ |
||
1953 | hcryp->pCrypInBuffPtr += 16U; |
||
1954 | hcryp->CrypInCount -= 16U; |
||
1955 | |||
1956 | /* Write the Input block in the Data Input register */ |
||
1957 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1958 | inputaddr+=4; |
||
1959 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1960 | inputaddr+=4; |
||
1961 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1962 | inputaddr+=4; |
||
1963 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
1964 | } |
||
1965 | return HAL_OK; |
||
1966 | } |
||
1967 | /** |
||
1968 | * @brief DMA CRYP Input Data process complete callback. |
||
1969 | * @param hdma DMA handle |
||
1970 | * @retval None |
||
1971 | */ |
||
1972 | static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) |
||
1973 | { |
||
1974 | CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; |
||
1975 | |||
1976 | /* Disable the DMA transfer for input request */ |
||
1977 | CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN); |
||
1978 | |||
1979 | /* Call input data transfer complete callback */ |
||
1980 | HAL_CRYP_InCpltCallback(hcryp); |
||
1981 | } |
||
1982 | |||
1983 | /** |
||
1984 | * @brief DMA CRYP Output Data process complete callback. |
||
1985 | * @param hdma DMA handle |
||
1986 | * @retval None |
||
1987 | */ |
||
1988 | static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) |
||
1989 | { |
||
1990 | CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; |
||
1991 | |||
1992 | /* Disable the DMA transfer for output request by resetting the DMAOUTEN bit |
||
1993 | in the DMACR register */ |
||
1994 | CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN); |
||
1995 | |||
1996 | /* Clear CCF Flag */ |
||
1997 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF); |
||
1998 | |||
1999 | /* Disable CRYP */ |
||
2000 | __HAL_CRYP_DISABLE(hcryp); |
||
2001 | |||
2002 | /* Change the CRYP state to ready */ |
||
2003 | hcryp->State = HAL_CRYP_STATE_READY; |
||
2004 | |||
2005 | /* Call output data transfer complete callback */ |
||
2006 | HAL_CRYP_OutCpltCallback(hcryp); |
||
2007 | } |
||
2008 | |||
2009 | /** |
||
2010 | * @brief DMA CRYP communication error callback. |
||
2011 | * @param hdma DMA handle |
||
2012 | * @retval None |
||
2013 | */ |
||
2014 | static void CRYP_DMAError(DMA_HandleTypeDef *hdma) |
||
2015 | { |
||
2016 | CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; |
||
2017 | hcryp->State= HAL_CRYP_STATE_ERROR; |
||
2018 | HAL_CRYP_ErrorCallback(hcryp); |
||
2019 | } |
||
2020 | |||
2021 | /** |
||
2022 | * @brief Writes the Key in Key registers. |
||
2023 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
2024 | * the configuration information for CRYP module |
||
2025 | * @param Key Pointer to Key buffer |
||
2026 | * @note Key must be written as little endian. |
||
2027 | * If Key pointer points at address n, |
||
2028 | * n[15:0] contains key[96:127], |
||
2029 | * (n+4)[15:0] contains key[64:95], |
||
2030 | * (n+8)[15:0] contains key[32:63] and |
||
2031 | * (n+12)[15:0] contains key[0:31] |
||
2032 | * @retval None |
||
2033 | */ |
||
2034 | static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key) |
||
2035 | { |
||
2036 | uint32_t keyaddr = (uint32_t)Key; |
||
2037 | |||
2038 | hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr)); |
||
2039 | keyaddr+=4; |
||
2040 | hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr)); |
||
2041 | keyaddr+=4; |
||
2042 | hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr)); |
||
2043 | keyaddr+=4; |
||
2044 | hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr)); |
||
2045 | } |
||
2046 | |||
2047 | /** |
||
2048 | * @brief Writes the InitVector/InitCounter in IV registers. |
||
2049 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
2050 | * the configuration information for CRYP module |
||
2051 | * @param InitVector Pointer to InitVector/InitCounter buffer |
||
2052 | * @note Init Vector must be written as little endian. |
||
2053 | * If Init Vector pointer points at address n, |
||
2054 | * n[15:0] contains Vector[96:127], |
||
2055 | * (n+4)[15:0] contains Vector[64:95], |
||
2056 | * (n+8)[15:0] contains Vector[32:63] and |
||
2057 | * (n+12)[15:0] contains Vector[0:31] |
||
2058 | * @retval None |
||
2059 | */ |
||
2060 | static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector) |
||
2061 | { |
||
2062 | uint32_t ivaddr = (uint32_t)InitVector; |
||
2063 | |||
2064 | hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr)); |
||
2065 | ivaddr+=4; |
||
2066 | hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr)); |
||
2067 | ivaddr+=4; |
||
2068 | hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr)); |
||
2069 | ivaddr+=4; |
||
2070 | hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr)); |
||
2071 | } |
||
2072 | |||
2073 | /** |
||
2074 | * @brief Process Data: Writes Input data in polling mode and reads the output data |
||
2075 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
2076 | * the configuration information for CRYP module |
||
2077 | * @param Input Pointer to the Input buffer |
||
2078 | * @param Ilength Length of the Input buffer, must be a multiple of 16. |
||
2079 | * @param Output Pointer to the returned buffer |
||
2080 | * @param Timeout Specify Timeout value |
||
2081 | * @retval None |
||
2082 | */ |
||
2083 | static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) |
||
2084 | { |
||
2085 | uint32_t tickstart = 0; |
||
2086 | |||
2087 | uint32_t index = 0; |
||
2088 | uint32_t inputaddr = (uint32_t)Input; |
||
2089 | uint32_t outputaddr = (uint32_t)Output; |
||
2090 | |||
2091 | for(index=0; (index < Ilength); index += 16) |
||
2092 | { |
||
2093 | /* Write the Input block in the Data Input register */ |
||
2094 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
2095 | inputaddr+=4; |
||
2096 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
2097 | inputaddr+=4; |
||
2098 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
2099 | inputaddr+=4; |
||
2100 | hcryp->Instance->DINR = *(uint32_t*)(inputaddr); |
||
2101 | inputaddr+=4; |
||
2102 | |||
2103 | /* Get timeout */ |
||
2104 | tickstart = HAL_GetTick(); |
||
2105 | |||
2106 | while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)) |
||
2107 | { |
||
2108 | /* Check for the Timeout */ |
||
2109 | if(Timeout != HAL_MAX_DELAY) |
||
2110 | { |
||
2111 | if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) |
||
2112 | { |
||
2113 | /* Change state */ |
||
2114 | hcryp->State = HAL_CRYP_STATE_TIMEOUT; |
||
2115 | |||
2116 | /* Process Unlocked */ |
||
2117 | __HAL_UNLOCK(hcryp); |
||
2118 | |||
2119 | return HAL_TIMEOUT; |
||
2120 | } |
||
2121 | } |
||
2122 | } |
||
2123 | /* Clear CCF Flag */ |
||
2124 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF); |
||
2125 | |||
2126 | /* Read the Output block from the Data Output Register */ |
||
2127 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
2128 | outputaddr+=4; |
||
2129 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
2130 | outputaddr+=4; |
||
2131 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
2132 | outputaddr+=4; |
||
2133 | *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR; |
||
2134 | outputaddr+=4; |
||
2135 | } |
||
2136 | /* Return function status */ |
||
2137 | return HAL_OK; |
||
2138 | } |
||
2139 | |||
2140 | /** |
||
2141 | * @brief Set the DMA configuration and start the DMA transfer |
||
2142 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
||
2143 | * the configuration information for CRYP module |
||
2144 | * @param inputaddr address of the Input buffer |
||
2145 | * @param Size Size of the Input buffer, must be a multiple of 16. |
||
2146 | * @param outputaddr address of the Output buffer |
||
2147 | * @retval None |
||
2148 | */ |
||
2149 | static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) |
||
2150 | { |
||
2151 | /* Set the CRYP DMA transfer complete callback */ |
||
2152 | hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; |
||
2153 | /* Set the DMA error callback */ |
||
2154 | hcryp->hdmain->XferErrorCallback = CRYP_DMAError; |
||
2155 | |||
2156 | /* Set the CRYP DMA transfer complete callback */ |
||
2157 | hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; |
||
2158 | /* Set the DMA error callback */ |
||
2159 | hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; |
||
2160 | |||
2161 | /* Enable the DMA In DMA Stream */ |
||
2162 | HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4); |
||
2163 | |||
2164 | /* Enable the DMA Out DMA Stream */ |
||
2165 | HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4); |
||
2166 | |||
2167 | /* Enable In and Out DMA requests */ |
||
2168 | SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN)); |
||
2169 | |||
2170 | /* Enable CRYP */ |
||
2171 | __HAL_CRYP_ENABLE(hcryp); |
||
2172 | } |
||
2173 | |||
2174 | /** |
||
2175 | * @} |
||
2176 | */ |
||
2177 | |||
2178 | #endif /* STM32L162xC || STM32L162xCA || STM32L162xD || STM32L162xE || STM32L162xDX*/ |
||
2179 | |||
2180 | /** |
||
2181 | * @} |
||
2182 | */ |
||
2183 | |||
2184 | /** |
||
2185 | * @} |
||
2186 | */ |
||
2187 | |||
2188 | #endif /* HAL_CRYP_MODULE_ENABLED */ |