Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 56 | mjames | 1 | /* ---------------------------------------------------------------------- |
| 2 | * Project: CMSIS DSP Library |
||
| 3 | * Title: arm_rfft_q15.c |
||
| 4 | * Description: RFFT & RIFFT Q15 process function |
||
| 5 | * |
||
| 6 | * $Date: 27. January 2017 |
||
| 7 | * $Revision: V.1.5.1 |
||
| 8 | * |
||
| 9 | * Target Processor: Cortex-M cores |
||
| 10 | * -------------------------------------------------------------------- */ |
||
| 11 | /* |
||
| 12 | * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. |
||
| 13 | * |
||
| 14 | * SPDX-License-Identifier: Apache-2.0 |
||
| 15 | * |
||
| 16 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
| 17 | * not use this file except in compliance with the License. |
||
| 18 | * You may obtain a copy of the License at |
||
| 19 | * |
||
| 20 | * www.apache.org/licenses/LICENSE-2.0 |
||
| 21 | * |
||
| 22 | * Unless required by applicable law or agreed to in writing, software |
||
| 23 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
| 24 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
| 25 | * See the License for the specific language governing permissions and |
||
| 26 | * limitations under the License. |
||
| 27 | */ |
||
| 28 | |||
| 29 | #include "arm_math.h" |
||
| 30 | |||
| 31 | /* ---------------------------------------------------------------------- |
||
| 32 | * Internal functions prototypes |
||
| 33 | * -------------------------------------------------------------------- */ |
||
| 34 | |||
| 35 | void arm_split_rfft_q15( |
||
| 36 | q15_t * pSrc, |
||
| 37 | uint32_t fftLen, |
||
| 38 | q15_t * pATable, |
||
| 39 | q15_t * pBTable, |
||
| 40 | q15_t * pDst, |
||
| 41 | uint32_t modifier); |
||
| 42 | |||
| 43 | void arm_split_rifft_q15( |
||
| 44 | q15_t * pSrc, |
||
| 45 | uint32_t fftLen, |
||
| 46 | q15_t * pATable, |
||
| 47 | q15_t * pBTable, |
||
| 48 | q15_t * pDst, |
||
| 49 | uint32_t modifier); |
||
| 50 | |||
| 51 | /** |
||
| 52 | * @addtogroup RealFFT |
||
| 53 | * @{ |
||
| 54 | */ |
||
| 55 | |||
| 56 | /** |
||
| 57 | * @brief Processing function for the Q15 RFFT/RIFFT. |
||
| 58 | * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure. |
||
| 59 | * @param[in] *pSrc points to the input buffer. |
||
| 60 | * @param[out] *pDst points to the output buffer. |
||
| 61 | * @return none. |
||
| 62 | * |
||
| 63 | * \par Input an output formats: |
||
| 64 | * \par |
||
| 65 | * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. |
||
| 66 | * Hence the output format is different for different RFFT sizes. |
||
| 67 | * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: |
||
| 68 | * \par |
||
| 69 | * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT" |
||
| 70 | * \par |
||
| 71 | * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT" |
||
| 72 | */ |
||
| 73 | |||
| 74 | void arm_rfft_q15( |
||
| 75 | const arm_rfft_instance_q15 * S, |
||
| 76 | q15_t * pSrc, |
||
| 77 | q15_t * pDst) |
||
| 78 | { |
||
| 79 | const arm_cfft_instance_q15 *S_CFFT = S->pCfft; |
||
| 80 | uint32_t i; |
||
| 81 | uint32_t L2 = S->fftLenReal >> 1; |
||
| 82 | |||
| 83 | /* Calculation of RIFFT of input */ |
||
| 84 | if (S->ifftFlagR == 1U) |
||
| 85 | { |
||
| 86 | /* Real IFFT core process */ |
||
| 87 | arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal, |
||
| 88 | S->pTwiddleBReal, pDst, S->twidCoefRModifier); |
||
| 89 | |||
| 90 | /* Complex IFFT process */ |
||
| 91 | arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR); |
||
| 92 | |||
| 93 | for(i=0;i<S->fftLenReal;i++) |
||
| 94 | { |
||
| 95 | pDst[i] = pDst[i] << 1; |
||
| 96 | } |
||
| 97 | } |
||
| 98 | else |
||
| 99 | { |
||
| 100 | /* Calculation of RFFT of input */ |
||
| 101 | |||
| 102 | /* Complex FFT process */ |
||
| 103 | arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR); |
||
| 104 | |||
| 105 | /* Real FFT core process */ |
||
| 106 | arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal, |
||
| 107 | S->pTwiddleBReal, pDst, S->twidCoefRModifier); |
||
| 108 | } |
||
| 109 | } |
||
| 110 | |||
| 111 | /** |
||
| 112 | * @} end of RealFFT group |
||
| 113 | */ |
||
| 114 | |||
| 115 | /** |
||
| 116 | * @brief Core Real FFT process |
||
| 117 | * @param *pSrc points to the input buffer. |
||
| 118 | * @param fftLen length of FFT. |
||
| 119 | * @param *pATable points to the A twiddle Coef buffer. |
||
| 120 | * @param *pBTable points to the B twiddle Coef buffer. |
||
| 121 | * @param *pDst points to the output buffer. |
||
| 122 | * @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
| 123 | * @return none. |
||
| 124 | * The function implements a Real FFT |
||
| 125 | */ |
||
| 126 | |||
| 127 | void arm_split_rfft_q15( |
||
| 128 | q15_t * pSrc, |
||
| 129 | uint32_t fftLen, |
||
| 130 | q15_t * pATable, |
||
| 131 | q15_t * pBTable, |
||
| 132 | q15_t * pDst, |
||
| 133 | uint32_t modifier) |
||
| 134 | { |
||
| 135 | uint32_t i; /* Loop Counter */ |
||
| 136 | q31_t outR, outI; /* Temporary variables for output */ |
||
| 137 | q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ |
||
| 138 | q15_t *pSrc1, *pSrc2; |
||
| 139 | #if defined (ARM_MATH_DSP) |
||
| 140 | q15_t *pD1, *pD2; |
||
| 141 | #endif |
||
| 142 | |||
| 143 | // pSrc[2U * fftLen] = pSrc[0]; |
||
| 144 | // pSrc[(2U * fftLen) + 1U] = pSrc[1]; |
||
| 145 | |||
| 146 | pCoefA = &pATable[modifier * 2U]; |
||
| 147 | pCoefB = &pBTable[modifier * 2U]; |
||
| 148 | |||
| 149 | pSrc1 = &pSrc[2]; |
||
| 150 | pSrc2 = &pSrc[(2U * fftLen) - 2U]; |
||
| 151 | |||
| 152 | #if defined (ARM_MATH_DSP) |
||
| 153 | |||
| 154 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
| 155 | i = 1U; |
||
| 156 | pD1 = pDst + 2; |
||
| 157 | pD2 = pDst + (4U * fftLen) - 2; |
||
| 158 | |||
| 159 | for(i = fftLen - 1; i > 0; i--) |
||
| 160 | { |
||
| 161 | /* |
||
| 162 | outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] |
||
| 163 | + pSrc[2 * n - 2 * i] * pBTable[2 * i] + |
||
| 164 | pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); |
||
| 165 | */ |
||
| 166 | |||
| 167 | /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + |
||
| 168 | pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - |
||
| 169 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ |
||
| 170 | |||
| 171 | |||
| 172 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 173 | |||
| 174 | /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */ |
||
| 175 | outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)); |
||
| 176 | |||
| 177 | #else |
||
| 178 | |||
| 179 | /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */ |
||
| 180 | outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA))); |
||
| 181 | |||
| 182 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
| 183 | |||
| 184 | /* pSrc[2 * n - 2 * i] * pBTable[2 * i] + |
||
| 185 | pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ |
||
| 186 | outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U; |
||
| 187 | |||
| 188 | /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - |
||
| 189 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ |
||
| 190 | |||
| 191 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 192 | |||
| 193 | outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); |
||
| 194 | |||
| 195 | #else |
||
| 196 | |||
| 197 | outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--); |
||
| 198 | |||
| 199 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
| 200 | |||
| 201 | /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */ |
||
| 202 | outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI); |
||
| 203 | |||
| 204 | /* write output */ |
||
| 205 | *pD1++ = (q15_t) outR; |
||
| 206 | *pD1++ = outI >> 16U; |
||
| 207 | |||
| 208 | /* write complex conjugate output */ |
||
| 209 | pD2[0] = (q15_t) outR; |
||
| 210 | pD2[1] = -(outI >> 16U); |
||
| 211 | pD2 -= 2; |
||
| 212 | |||
| 213 | /* update coefficient pointer */ |
||
| 214 | pCoefB = pCoefB + (2U * modifier); |
||
| 215 | pCoefA = pCoefA + (2U * modifier); |
||
| 216 | } |
||
| 217 | |||
| 218 | pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1; |
||
| 219 | pDst[(2U * fftLen) + 1U] = 0; |
||
| 220 | |||
| 221 | pDst[0] = (pSrc[0] + pSrc[1]) >> 1; |
||
| 222 | pDst[1] = 0; |
||
| 223 | |||
| 224 | #else |
||
| 225 | |||
| 226 | /* Run the below code for Cortex-M0 */ |
||
| 227 | i = 1U; |
||
| 228 | |||
| 229 | while (i < fftLen) |
||
| 230 | { |
||
| 231 | /* |
||
| 232 | outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] |
||
| 233 | + pSrc[2 * n - 2 * i] * pBTable[2 * i] + |
||
| 234 | pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); |
||
| 235 | */ |
||
| 236 | |||
| 237 | outR = *pSrc1 * *pCoefA; |
||
| 238 | outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1)); |
||
| 239 | outR = outR + (*pSrc2 * *pCoefB); |
||
| 240 | outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16; |
||
| 241 | |||
| 242 | |||
| 243 | /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + |
||
| 244 | pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - |
||
| 245 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); |
||
| 246 | */ |
||
| 247 | |||
| 248 | outI = *pSrc2 * *(pCoefB + 1); |
||
| 249 | outI = outI - (*(pSrc2 + 1) * *pCoefB); |
||
| 250 | outI = outI + (*(pSrc1 + 1) * *pCoefA); |
||
| 251 | outI = outI + (*pSrc1 * *(pCoefA + 1)); |
||
| 252 | |||
| 253 | /* update input pointers */ |
||
| 254 | pSrc1 += 2U; |
||
| 255 | pSrc2 -= 2U; |
||
| 256 | |||
| 257 | /* write output */ |
||
| 258 | pDst[2U * i] = (q15_t) outR; |
||
| 259 | pDst[(2U * i) + 1U] = outI >> 16U; |
||
| 260 | |||
| 261 | /* write complex conjugate output */ |
||
| 262 | pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR; |
||
| 263 | pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U); |
||
| 264 | |||
| 265 | /* update coefficient pointer */ |
||
| 266 | pCoefB = pCoefB + (2U * modifier); |
||
| 267 | pCoefA = pCoefA + (2U * modifier); |
||
| 268 | |||
| 269 | i++; |
||
| 270 | } |
||
| 271 | |||
| 272 | pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1; |
||
| 273 | pDst[(2U * fftLen) + 1U] = 0; |
||
| 274 | |||
| 275 | pDst[0] = (pSrc[0] + pSrc[1]) >> 1; |
||
| 276 | pDst[1] = 0; |
||
| 277 | |||
| 278 | #endif /* #if defined (ARM_MATH_DSP) */ |
||
| 279 | } |
||
| 280 | |||
| 281 | |||
| 282 | /** |
||
| 283 | * @brief Core Real IFFT process |
||
| 284 | * @param[in] *pSrc points to the input buffer. |
||
| 285 | * @param[in] fftLen length of FFT. |
||
| 286 | * @param[in] *pATable points to the twiddle Coef A buffer. |
||
| 287 | * @param[in] *pBTable points to the twiddle Coef B buffer. |
||
| 288 | * @param[out] *pDst points to the output buffer. |
||
| 289 | * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
| 290 | * @return none. |
||
| 291 | * The function implements a Real IFFT |
||
| 292 | */ |
||
| 293 | void arm_split_rifft_q15( |
||
| 294 | q15_t * pSrc, |
||
| 295 | uint32_t fftLen, |
||
| 296 | q15_t * pATable, |
||
| 297 | q15_t * pBTable, |
||
| 298 | q15_t * pDst, |
||
| 299 | uint32_t modifier) |
||
| 300 | { |
||
| 301 | uint32_t i; /* Loop Counter */ |
||
| 302 | q31_t outR, outI; /* Temporary variables for output */ |
||
| 303 | q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ |
||
| 304 | q15_t *pSrc1, *pSrc2; |
||
| 305 | q15_t *pDst1 = &pDst[0]; |
||
| 306 | |||
| 307 | pCoefA = &pATable[0]; |
||
| 308 | pCoefB = &pBTable[0]; |
||
| 309 | |||
| 310 | pSrc1 = &pSrc[0]; |
||
| 311 | pSrc2 = &pSrc[2U * fftLen]; |
||
| 312 | |||
| 313 | #if defined (ARM_MATH_DSP) |
||
| 314 | |||
| 315 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
| 316 | i = fftLen; |
||
| 317 | |||
| 318 | while (i > 0U) |
||
| 319 | { |
||
| 320 | /* |
||
| 321 | outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + |
||
| 322 | pIn[2 * n - 2 * i] * pBTable[2 * i] - |
||
| 323 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); |
||
| 324 | |||
| 325 | outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - |
||
| 326 | pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - |
||
| 327 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); |
||
| 328 | */ |
||
| 329 | |||
| 330 | |||
| 331 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 332 | |||
| 333 | /* pIn[2 * n - 2 * i] * pBTable[2 * i] - |
||
| 334 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ |
||
| 335 | outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)); |
||
| 336 | |||
| 337 | #else |
||
| 338 | |||
| 339 | /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] + |
||
| 340 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */ |
||
| 341 | outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB))); |
||
| 342 | |||
| 343 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
| 344 | |||
| 345 | /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + |
||
| 346 | pIn[2 * n - 2 * i] * pBTable[2 * i] */ |
||
| 347 | outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U; |
||
| 348 | |||
| 349 | /* |
||
| 350 | -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] + |
||
| 351 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ |
||
| 352 | outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); |
||
| 353 | |||
| 354 | /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */ |
||
| 355 | |||
| 356 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 357 | |||
| 358 | outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI); |
||
| 359 | |||
| 360 | #else |
||
| 361 | |||
| 362 | outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI); |
||
| 363 | |||
| 364 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
| 365 | /* write output */ |
||
| 366 | |||
| 367 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 368 | |||
| 369 | *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16); |
||
| 370 | |||
| 371 | #else |
||
| 372 | |||
| 373 | *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16); |
||
| 374 | |||
| 375 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
| 376 | |||
| 377 | /* update coefficient pointer */ |
||
| 378 | pCoefB = pCoefB + (2U * modifier); |
||
| 379 | pCoefA = pCoefA + (2U * modifier); |
||
| 380 | |||
| 381 | i--; |
||
| 382 | } |
||
| 383 | #else |
||
| 384 | /* Run the below code for Cortex-M0 */ |
||
| 385 | i = fftLen; |
||
| 386 | |||
| 387 | while (i > 0U) |
||
| 388 | { |
||
| 389 | /* |
||
| 390 | outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + |
||
| 391 | pIn[2 * n - 2 * i] * pBTable[2 * i] - |
||
| 392 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); |
||
| 393 | */ |
||
| 394 | |||
| 395 | outR = *pSrc2 * *pCoefB; |
||
| 396 | outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1)); |
||
| 397 | outR = outR + (*pSrc1 * *pCoefA); |
||
| 398 | outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16; |
||
| 399 | |||
| 400 | /* |
||
| 401 | outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - |
||
| 402 | pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - |
||
| 403 | pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); |
||
| 404 | */ |
||
| 405 | |||
| 406 | outI = *(pSrc1 + 1) * *pCoefA; |
||
| 407 | outI = outI - (*pSrc1 * *(pCoefA + 1)); |
||
| 408 | outI = outI - (*pSrc2 * *(pCoefB + 1)); |
||
| 409 | outI = outI - (*(pSrc2 + 1) * *(pCoefB)); |
||
| 410 | |||
| 411 | /* update input pointers */ |
||
| 412 | pSrc1 += 2U; |
||
| 413 | pSrc2 -= 2U; |
||
| 414 | |||
| 415 | /* write output */ |
||
| 416 | *pDst1++ = (q15_t) outR; |
||
| 417 | *pDst1++ = (q15_t) (outI >> 16); |
||
| 418 | |||
| 419 | /* update coefficient pointer */ |
||
| 420 | pCoefB = pCoefB + (2U * modifier); |
||
| 421 | pCoefA = pCoefA + (2U * modifier); |
||
| 422 | |||
| 423 | i--; |
||
| 424 | } |
||
| 425 | #endif /* #if defined (ARM_MATH_DSP) */ |
||
| 426 | } |