Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
56 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Project: CMSIS DSP Library |
||
3 | * Title: arm_mat_mult_fast_q15.c |
||
4 | * Description: Q15 matrix multiplication (fast variant) |
||
5 | * |
||
6 | * $Date: 27. January 2017 |
||
7 | * $Revision: V.1.5.1 |
||
8 | * |
||
9 | * Target Processor: Cortex-M cores |
||
10 | * -------------------------------------------------------------------- */ |
||
11 | /* |
||
12 | * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. |
||
13 | * |
||
14 | * SPDX-License-Identifier: Apache-2.0 |
||
15 | * |
||
16 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
17 | * not use this file except in compliance with the License. |
||
18 | * You may obtain a copy of the License at |
||
19 | * |
||
20 | * www.apache.org/licenses/LICENSE-2.0 |
||
21 | * |
||
22 | * Unless required by applicable law or agreed to in writing, software |
||
23 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
24 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
25 | * See the License for the specific language governing permissions and |
||
26 | * limitations under the License. |
||
27 | */ |
||
28 | |||
29 | #include "arm_math.h" |
||
30 | |||
31 | /** |
||
32 | * @ingroup groupMatrix |
||
33 | */ |
||
34 | |||
35 | /** |
||
36 | * @addtogroup MatrixMult |
||
37 | * @{ |
||
38 | */ |
||
39 | |||
40 | |||
41 | /** |
||
42 | * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
43 | * @param[in] *pSrcA points to the first input matrix structure |
||
44 | * @param[in] *pSrcB points to the second input matrix structure |
||
45 | * @param[out] *pDst points to output matrix structure |
||
46 | * @param[in] *pState points to the array for storing intermediate results |
||
47 | * @return The function returns either |
||
48 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
49 | * |
||
50 | * @details |
||
51 | * <b>Scaling and Overflow Behavior:</b> |
||
52 | * |
||
53 | * \par |
||
54 | * The difference between the function arm_mat_mult_q15() and this fast variant is that |
||
55 | * the fast variant use a 32-bit rather than a 64-bit accumulator. |
||
56 | * The result of each 1.15 x 1.15 multiplication is truncated to |
||
57 | * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 |
||
58 | * format. Finally, the accumulator is saturated and converted to a 1.15 result. |
||
59 | * |
||
60 | * \par |
||
61 | * The fast version has the same overflow behavior as the standard version but provides |
||
62 | * less precision since it discards the low 16 bits of each multiplication result. |
||
63 | * In order to avoid overflows completely the input signals must be scaled down. |
||
64 | * Scale down one of the input matrices by log2(numColsA) bits to |
||
65 | * avoid overflows, as a total of numColsA additions are computed internally for each |
||
66 | * output element. |
||
67 | * |
||
68 | * \par |
||
69 | * See <code>arm_mat_mult_q15()</code> for a slower implementation of this function |
||
70 | * which uses 64-bit accumulation to provide higher precision. |
||
71 | */ |
||
72 | |||
73 | arm_status arm_mat_mult_fast_q15( |
||
74 | const arm_matrix_instance_q15 * pSrcA, |
||
75 | const arm_matrix_instance_q15 * pSrcB, |
||
76 | arm_matrix_instance_q15 * pDst, |
||
77 | q15_t * pState) |
||
78 | { |
||
79 | q31_t sum; /* accumulator */ |
||
80 | q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */ |
||
81 | q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */ |
||
82 | q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */ |
||
83 | q15_t *px; /* Temporary output data matrix pointer */ |
||
84 | uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ |
||
85 | uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ |
||
86 | uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ |
||
87 | uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */ |
||
88 | uint32_t col, i = 0U, row = numRowsB, colCnt; /* loop counters */ |
||
89 | arm_status status; /* status of matrix multiplication */ |
||
90 | |||
91 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
92 | |||
93 | q31_t in; /* Temporary variable to hold the input value */ |
||
94 | q31_t inA1, inA2, inB1, inB2; |
||
95 | q31_t sum2, sum3, sum4; |
||
96 | q15_t *pInA2, *pInB2, *px2; |
||
97 | uint32_t j = 0; |
||
98 | |||
99 | #else |
||
100 | |||
101 | q15_t in; /* Temporary variable to hold the input value */ |
||
102 | q15_t inA1, inA2, inB1, inB2; |
||
103 | |||
104 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
||
105 | |||
106 | #ifdef ARM_MATH_MATRIX_CHECK |
||
107 | /* Check for matrix mismatch condition */ |
||
108 | if ((pSrcA->numCols != pSrcB->numRows) || |
||
109 | (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) |
||
110 | { |
||
111 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
112 | status = ARM_MATH_SIZE_MISMATCH; |
||
113 | } |
||
114 | else |
||
115 | #endif |
||
116 | { |
||
117 | /* Matrix transpose */ |
||
118 | do |
||
119 | { |
||
120 | /* Apply loop unrolling and exchange the columns with row elements */ |
||
121 | col = numColsB >> 2; |
||
122 | |||
123 | /* The pointer px is set to starting address of the column being processed */ |
||
124 | px = pSrcBT + i; |
||
125 | |||
126 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
||
127 | ** a second loop below computes the remaining 1 to 3 samples. */ |
||
128 | while (col > 0U) |
||
129 | { |
||
130 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
131 | /* Read two elements from the row */ |
||
132 | in = *__SIMD32(pInB)++; |
||
133 | |||
134 | /* Unpack and store one element in the destination */ |
||
135 | #ifndef ARM_MATH_BIG_ENDIAN |
||
136 | |||
137 | *px = (q15_t) in; |
||
138 | |||
139 | #else |
||
140 | |||
141 | *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); |
||
142 | |||
143 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
144 | |||
145 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
146 | px += numRowsB; |
||
147 | |||
148 | /* Unpack and store the second element in the destination */ |
||
149 | #ifndef ARM_MATH_BIG_ENDIAN |
||
150 | |||
151 | *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); |
||
152 | |||
153 | #else |
||
154 | |||
155 | *px = (q15_t) in; |
||
156 | |||
157 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
158 | |||
159 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
160 | px += numRowsB; |
||
161 | |||
162 | /* Read two elements from the row */ |
||
163 | in = *__SIMD32(pInB)++; |
||
164 | |||
165 | /* Unpack and store one element in the destination */ |
||
166 | #ifndef ARM_MATH_BIG_ENDIAN |
||
167 | |||
168 | *px = (q15_t) in; |
||
169 | |||
170 | #else |
||
171 | |||
172 | *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); |
||
173 | |||
174 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
175 | |||
176 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
177 | px += numRowsB; |
||
178 | |||
179 | /* Unpack and store the second element in the destination */ |
||
180 | |||
181 | #ifndef ARM_MATH_BIG_ENDIAN |
||
182 | |||
183 | *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); |
||
184 | |||
185 | #else |
||
186 | |||
187 | *px = (q15_t) in; |
||
188 | |||
189 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
190 | |||
191 | #else |
||
192 | |||
193 | /* Read one element from the row */ |
||
194 | in = *pInB++; |
||
195 | |||
196 | /* Store one element in the destination */ |
||
197 | *px = in; |
||
198 | |||
199 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
200 | px += numRowsB; |
||
201 | |||
202 | /* Read one element from the row */ |
||
203 | in = *pInB++; |
||
204 | |||
205 | /* Store one element in the destination */ |
||
206 | *px = in; |
||
207 | |||
208 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
209 | px += numRowsB; |
||
210 | |||
211 | /* Read one element from the row */ |
||
212 | in = *pInB++; |
||
213 | |||
214 | /* Store one element in the destination */ |
||
215 | *px = in; |
||
216 | |||
217 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
218 | px += numRowsB; |
||
219 | |||
220 | /* Read one element from the row */ |
||
221 | in = *pInB++; |
||
222 | |||
223 | /* Store one element in the destination */ |
||
224 | *px = in; |
||
225 | |||
226 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
||
227 | |||
228 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
229 | px += numRowsB; |
||
230 | |||
231 | /* Decrement the column loop counter */ |
||
232 | col--; |
||
233 | } |
||
234 | |||
235 | /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. |
||
236 | ** No loop unrolling is used. */ |
||
237 | col = numColsB % 0x4U; |
||
238 | |||
239 | while (col > 0U) |
||
240 | { |
||
241 | /* Read and store the input element in the destination */ |
||
242 | *px = *pInB++; |
||
243 | |||
244 | /* Update the pointer px to point to the next row of the transposed matrix */ |
||
245 | px += numRowsB; |
||
246 | |||
247 | /* Decrement the column loop counter */ |
||
248 | col--; |
||
249 | } |
||
250 | |||
251 | i++; |
||
252 | |||
253 | /* Decrement the row loop counter */ |
||
254 | row--; |
||
255 | |||
256 | } while (row > 0U); |
||
257 | |||
258 | /* Reset the variables for the usage in the following multiplication process */ |
||
259 | row = numRowsA; |
||
260 | i = 0U; |
||
261 | px = pDst->pData; |
||
262 | |||
263 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
264 | /* Process two rows from matrix A at a time and output two rows at a time */ |
||
265 | row = row >> 1; |
||
266 | px2 = px + numColsB; |
||
267 | #endif |
||
268 | |||
269 | /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ |
||
270 | /* row loop */ |
||
271 | while (row > 0U) |
||
272 | { |
||
273 | /* For every row wise process, the column loop counter is to be initiated */ |
||
274 | col = numColsB; |
||
275 | |||
276 | /* For every row wise process, the pIn2 pointer is set |
||
277 | ** to the starting address of the transposed pSrcB data */ |
||
278 | pInB = pSrcBT; |
||
279 | |||
280 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
281 | /* Process two (transposed) columns from matrix B at a time */ |
||
282 | col = col >> 1; |
||
283 | j = 0; |
||
284 | #endif |
||
285 | |||
286 | /* column loop */ |
||
287 | while (col > 0U) |
||
288 | { |
||
289 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
290 | sum = 0; |
||
291 | |||
292 | /* Initiate the pointer pInA to point to the starting address of the column being processed */ |
||
293 | pInA = pSrcA->pData + i; |
||
294 | |||
295 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
296 | sum2 = 0; |
||
297 | sum3 = 0; |
||
298 | sum4 = 0; |
||
299 | pInB = pSrcBT + j; |
||
300 | pInA2 = pInA + numColsA; |
||
301 | pInB2 = pInB + numRowsB; |
||
302 | |||
303 | /* Read in two elements at once - alows dual MAC instruction */ |
||
304 | colCnt = numColsA >> 1; |
||
305 | #else |
||
306 | colCnt = numColsA >> 2; |
||
307 | #endif |
||
308 | |||
309 | /* matrix multiplication */ |
||
310 | while (colCnt > 0U) |
||
311 | { |
||
312 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
313 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
314 | |||
315 | inA1 = *__SIMD32(pInA)++; |
||
316 | inB1 = *__SIMD32(pInB)++; |
||
317 | inA2 = *__SIMD32(pInA2)++; |
||
318 | inB2 = *__SIMD32(pInB2)++; |
||
319 | |||
320 | sum = __SMLAD(inA1, inB1, sum); |
||
321 | sum2 = __SMLAD(inA1, inB2, sum2); |
||
322 | sum3 = __SMLAD(inA2, inB1, sum3); |
||
323 | sum4 = __SMLAD(inA2, inB2, sum4); |
||
324 | |||
325 | #else |
||
326 | |||
327 | inA1 = *pInA; |
||
328 | inB1 = *pInB; |
||
329 | sum += inA1 * inB1; |
||
330 | |||
331 | inA2 = pInA[1]; |
||
332 | inB2 = pInB[1]; |
||
333 | sum += inA2 * inB2; |
||
334 | |||
335 | inA1 = pInA[2]; |
||
336 | inB1 = pInB[2]; |
||
337 | sum += inA1 * inB1; |
||
338 | |||
339 | inA2 = pInA[3]; |
||
340 | inB2 = pInB[3]; |
||
341 | sum += inA2 * inB2; |
||
342 | |||
343 | pInA += 4; |
||
344 | pInB += 4; |
||
345 | |||
346 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
||
347 | |||
348 | /* Decrement the loop counter */ |
||
349 | colCnt--; |
||
350 | } |
||
351 | |||
352 | /* process odd column samples */ |
||
353 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
354 | if (numColsA & 1U) { |
||
355 | inA1 = *pInA++; |
||
356 | inB1 = *pInB++; |
||
357 | inA2 = *pInA2++; |
||
358 | inB2 = *pInB2++; |
||
359 | sum += inA1 * inB1; |
||
360 | sum2 += inA1 * inB2; |
||
361 | sum3 += inA2 * inB1; |
||
362 | sum4 += inA2 * inB2; |
||
363 | } |
||
364 | #else |
||
365 | colCnt = numColsA % 0x4U; |
||
366 | |||
367 | while (colCnt > 0U) |
||
368 | { |
||
369 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
370 | sum += (q31_t) (*pInA++) * (*pInB++); |
||
371 | |||
372 | colCnt--; |
||
373 | } |
||
374 | #endif |
||
375 | |||
376 | /* Saturate and store the result in the destination buffer */ |
||
377 | *px++ = (q15_t) (sum >> 15); |
||
378 | |||
379 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
380 | *px++ = (q15_t) (sum2 >> 15); |
||
381 | *px2++ = (q15_t) (sum3 >> 15); |
||
382 | *px2++ = (q15_t) (sum4 >> 15); |
||
383 | j += numRowsB * 2; |
||
384 | #endif |
||
385 | |||
386 | /* Decrement the column loop counter */ |
||
387 | col--; |
||
388 | |||
389 | } |
||
390 | |||
391 | i = i + numColsA; |
||
392 | |||
393 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
394 | i = i + numColsA; |
||
395 | px = px2 + (numColsB & 1U); |
||
396 | px2 = px + numColsB; |
||
397 | #endif |
||
398 | |||
399 | /* Decrement the row loop counter */ |
||
400 | row--; |
||
401 | |||
402 | } |
||
403 | |||
404 | /* Compute any remaining odd row/column below */ |
||
405 | |||
406 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
407 | |||
408 | /* Compute remaining output column */ |
||
409 | if (numColsB & 1U) { |
||
410 | |||
411 | /* Avoid redundant computation of last element */ |
||
412 | row = numRowsA & (~0x1); |
||
413 | |||
414 | /* Point to remaining unfilled column in output matrix */ |
||
415 | px = pDst->pData+numColsB-1; |
||
416 | pInA = pSrcA->pData; |
||
417 | |||
418 | /* row loop */ |
||
419 | while (row > 0) |
||
420 | { |
||
421 | |||
422 | /* point to last column in matrix B */ |
||
423 | pInB = pSrcBT + numRowsB*(numColsB-1); |
||
424 | |||
425 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
426 | sum = 0; |
||
427 | |||
428 | /* Compute 4 columns at once */ |
||
429 | colCnt = numColsA >> 2; |
||
430 | |||
431 | /* matrix multiplication */ |
||
432 | while (colCnt > 0U) |
||
433 | { |
||
434 | inA1 = *__SIMD32(pInA)++; |
||
435 | inA2 = *__SIMD32(pInA)++; |
||
436 | inB1 = *__SIMD32(pInB)++; |
||
437 | inB2 = *__SIMD32(pInB)++; |
||
438 | |||
439 | sum = __SMLAD(inA1, inB1, sum); |
||
440 | sum = __SMLAD(inA2, inB2, sum); |
||
441 | |||
442 | /* Decrement the loop counter */ |
||
443 | colCnt--; |
||
444 | } |
||
445 | |||
446 | colCnt = numColsA & 3U; |
||
447 | while (colCnt > 0U) { |
||
448 | sum += (q31_t) (*pInA++) * (*pInB++); |
||
449 | colCnt--; |
||
450 | } |
||
451 | |||
452 | /* Store the result in the destination buffer */ |
||
453 | *px = (q15_t) (sum >> 15); |
||
454 | px += numColsB; |
||
455 | |||
456 | /* Decrement the row loop counter */ |
||
457 | row--; |
||
458 | } |
||
459 | } |
||
460 | |||
461 | /* Compute remaining output row */ |
||
462 | if (numRowsA & 1U) { |
||
463 | |||
464 | /* point to last row in output matrix */ |
||
465 | px = pDst->pData+(numColsB)*(numRowsA-1); |
||
466 | |||
467 | pInB = pSrcBT; |
||
468 | col = numColsB; |
||
469 | i = 0U; |
||
470 | |||
471 | /* col loop */ |
||
472 | while (col > 0) |
||
473 | { |
||
474 | |||
475 | /* point to last row in matrix A */ |
||
476 | pInA = pSrcA->pData + (numRowsA-1)*numColsA; |
||
477 | |||
478 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
479 | sum = 0; |
||
480 | |||
481 | /* Compute 4 columns at once */ |
||
482 | colCnt = numColsA >> 2; |
||
483 | |||
484 | /* matrix multiplication */ |
||
485 | while (colCnt > 0U) |
||
486 | { |
||
487 | inA1 = *__SIMD32(pInA)++; |
||
488 | inA2 = *__SIMD32(pInA)++; |
||
489 | inB1 = *__SIMD32(pInB)++; |
||
490 | inB2 = *__SIMD32(pInB)++; |
||
491 | |||
492 | sum = __SMLAD(inA1, inB1, sum); |
||
493 | sum = __SMLAD(inA2, inB2, sum); |
||
494 | |||
495 | /* Decrement the loop counter */ |
||
496 | colCnt--; |
||
497 | } |
||
498 | |||
499 | colCnt = numColsA & 3U; |
||
500 | while (colCnt > 0U) { |
||
501 | sum += (q31_t) (*pInA++) * (*pInB++); |
||
502 | colCnt--; |
||
503 | } |
||
504 | |||
505 | /* Store the result in the destination buffer */ |
||
506 | *px++ = (q15_t) (sum >> 15); |
||
507 | |||
508 | /* Decrement the col loop counter */ |
||
509 | col--; |
||
510 | } |
||
511 | } |
||
512 | |||
513 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
||
514 | |||
515 | /* set status as ARM_MATH_SUCCESS */ |
||
516 | status = ARM_MATH_SUCCESS; |
||
517 | } |
||
518 | |||
519 | /* Return to application */ |
||
520 | return (status); |
||
521 | } |
||
522 | |||
523 | /** |
||
524 | * @} end of MatrixMult group |
||
525 | */ |