Subversion Repositories DashDisplay

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
56 mjames 1
/**
2
  ******************************************************************************
3
  * @file    stm32l1xx_hal_opamp.c
4
  * @author  MCD Application Team
5
  * @brief   OPAMP HAL module driver.
6
  *          This file provides firmware functions to manage the following
7
  *          functionalities of the operational amplifier(s) peripheral:
8
  *           + OPAMP configuration
9
  *           + OPAMP calibration
10
  *          Thanks to
11
  *           + Initialization and de-initialization functions
12
  *           + IO operation functions
13
  *           + Peripheral Control functions
14
  *           + Peripheral State functions
15
  *        
16
  @verbatim
17
================================================================================
18
          ##### OPAMP Peripheral Features #####
19
================================================================================
20
  [..] The device integrates up to 3 operational amplifiers OPAMP1, OPAMP2,
21
       OPAMP3 (OPAMP3 availability depends on device category)
22
 
23
       (#) The OPAMP(s) provide(s) several exclusive running modes.
24
       (++) Standalone mode
25
       (++) Follower mode
26
 
27
       (#) All OPAMP (same for all OPAMPs) can operate in
28
       (++) Either Low range (VDDA < 2.4V) power supply
29
       (++) Or High range (VDDA > 2.4V) power supply
30
 
31
       (#) Each OPAMP(s) can be configured in normal and low power mode.
32
 
33
       (#) The OPAMP(s) provide(s) calibration capabilities.  
34
       (++) Calibration aims at correcting some offset for running mode.
35
       (++) The OPAMP uses either factory calibration settings OR user defined
36
           calibration (trimming) settings (i.e. trimming mode).
37
       (++) The user defined settings can be figured out using self calibration
38
           handled by HAL_OPAMP_SelfCalibrate, HAL_OPAMPEx_SelfCalibrateAll
39
       (++) HAL_OPAMP_SelfCalibrate:
40
       (+++) Runs automatically the calibration in 2 steps: for transistors
41
            differential pair high (PMOS) or low (NMOS)
42
       (+++) Enables the user trimming mode
43
       (+++) Updates the init structure with trimming values with fresh calibration
44
            results.
45
            The user may store the calibration results for larger
46
            (ex monitoring the trimming as a function of temperature
47
            for instance)
48
       (+++) For devices having several OPAMPs, HAL_OPAMPEx_SelfCalibrateAll
49
            runs calibration of all OPAMPs in parallel to save search time.
50
 
51
       (#) Running mode: Standalone mode
52
       (++) Gain is set externally (gain depends on external loads).
53
       (++) Follower mode also possible externally by connecting the inverting input to
54
           the output.
55
 
56
       (#) Running mode: Follower mode
57
       (++) No Inverting Input is connected.
58
       (++) The OPAMP(s) output(s) are internally connected to inverting input.
59
 
60
            ##### How to use this driver #####
61
================================================================================
62
  [..]
63
 
64
    *** Power supply range ***
65
    ============================================
66
    [..] To run in low power mode:
67
 
68
      (#) Configure the OPAMP using HAL_OPAMP_Init() function:
69
      (++) Select OPAMP_POWERSUPPLY_LOW (VDDA lower than 2.4V)
70
      (++) Otherwise select OPAMP_POWERSUPPLY_HIGH (VDDA higher than 2.4V)
71
 
72
    *** Low / normal power mode ***
73
    ============================================
74
    [..] To run in low power mode:
75
 
76
      (#) Configure the OPAMP using HAL_OPAMP_Init() function:
77
      (++) Select OPAMP_POWERMODE_LOWPOWER
78
      (++) Otherwise select OPAMP_POWERMODE_NORMAL
79
 
80
    *** Calibration ***
81
    ============================================
82
    [..] To run the OPAMP calibration self calibration:
83
 
84
      (#) Start calibration using HAL_OPAMP_SelfCalibrate.
85
           Store the calibration results.
86
 
87
    *** Running mode ***
88
    ============================================
89
 
90
    [..] To use the OPAMP, perform the following steps:
91
 
92
      (#) Fill in the HAL_OPAMP_MspInit() to
93
      (++) Enable the OPAMP Peripheral clock using macro __HAL_RCC_OPAMP_CLK_ENABLE()
94
      (++) Configure the OPAMP input AND output in analog mode using
95
           HAL_GPIO_Init() to map the OPAMP output to the GPIO pin.
96
 
97
      (#) Registrate Callbacks
98
      (++) The compilation define  USE_HAL_OPAMP_REGISTER_CALLBACKS when set to 1
99
           allows the user to configure dynamically the driver callbacks.
100
 
101
      (++) Use Functions @ref HAL_OPAMP_RegisterCallback() to register a user callback,
102
           it allows to register following callbacks:
103
      (+++) MspInitCallback         : OPAMP MspInit.
104
      (+++) MspDeInitCallback       : OPAMP MspFeInit.
105
           This function takes as parameters the HAL peripheral handle, the Callback ID
106
           and a pointer to the user callback function.
107
 
108
      (++) Use function @ref HAL_OPAMP_UnRegisterCallback() to reset a callback to the default
109
           weak (surcharged) function. It allows to reset following callbacks:
110
      (+++) MspInitCallback         : OPAMP MspInit.
111
      (+++) MspDeInitCallback       : OPAMP MspdeInit.
112
      (+++) All Callbacks
113
 
114
      (#) Configure the OPAMP using HAL_OPAMP_Init() function:
115
      (++) Select the mode
116
      (++) Select the inverting input
117
      (++) Select the non-inverting input
118
      (++) Select either factory or user defined trimming mode.
119
      (++) If the user-defined trimming mode is enabled, select PMOS & NMOS trimming values
120
          (typically values set by HAL_OPAMP_SelfCalibrate function).
121
 
122
      (#) Enable the OPAMP using HAL_OPAMP_Start() function.
123
 
124
      (#) Disable the OPAMP using HAL_OPAMP_Stop() function.
125
 
126
      (#) Lock the OPAMP in running mode using HAL_OPAMP_Lock() function.
127
          Caution: On STM32L1, HAL OPAMP lock is software lock only (not
128
          hardware lock as on some other STM32 devices)
129
 
130
      (#) If needed, unlock the OPAMP using HAL_OPAMPEx_Unlock() function.
131
 
132
    *** Running mode: change of configuration while OPAMP ON  ***
133
    ============================================
134
    [..] To Re-configure OPAMP when OPAMP is ON (change on the fly)
135
      (#) If needed, fill in the HAL_OPAMP_MspInit()
136
      (++) This is the case for instance if you wish to use new OPAMP I/O
137
 
138
      (#) Configure the OPAMP using HAL_OPAMP_Init() function:
139
      (++) As in configure case, select first the parameters you wish to modify.
140
 
141
      (#) Change from low power mode to normal power mode (& vice versa) requires  
142
          first HAL_OPAMP_DeInit() (force OPAMP OFF) and then HAL_OPAMP_Init().
143
          In other words, of OPAMP is ON, HAL_OPAMP_Init can NOT change power mode
144
          alone.
145
 
146
  @endverbatim
147
  ******************************************************************************
148
  * @attention
149
  *
150
  * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
151
  * All rights reserved.</center></h2>
152
  *
153
  * This software component is licensed by ST under BSD 3-Clause license,
154
  * the "License"; You may not use this file except in compliance with the
155
  * License. You may obtain a copy of the License at:
156
  *                        opensource.org/licenses/BSD-3-Clause
157
  *
158
  ******************************************************************************  
159
  */
160
 
161
/*
162
  Additionnal remark:
163
    The OPAMPs inverting input can be selected among the list shown by table below.
164
    The OPAMPs non inverting input can be selected among the list shown by table below.
165
 
166
    Table 1.  OPAMPs inverting/non-inverting inputs for STM32L1 devices:
167
    +--------------------------------------------------------------------------+
168
    |                | HAL param  |    OPAMP1    |    OPAMP2    |   OPAMP3(4)  |
169
    |                |   name     |              |              |              |
170
    |----------------|------------|--------------|--------------|--------------|
171
    |   Inverting    |    VM0     |     PA2      |     PA7      |     PC2      |
172
    |    input (1)   |    VM1     | VINM pin (2) | VINM pin (2) | VINM pin (2) |
173
    |----------------|------------|--------------|--------------|--------------|
174
    |  Non Inverting |    VP0     |     PA1      |     PA6      |     PC1      |
175
    |    input       | DAC_CH1 (3)|   DAC_CH1    |   DAC_CH1    |     ---      |
176
    |                | DAC_CH2 (3)|     ---      |   DAC_CH2    |   DAC_CH2    |
177
    +--------------------------------------------------------------------------+
178
    (1): NA in follower mode.
179
    (2): OPAMP input OPAMPx_VINM are dedicated OPAMP pins, their availability
180
         depends on device package.
181
    (3): DAC channels 1 and 2 are connected internally to OPAMP. Nevertheless,
182
         I/O pins connected to DAC can still be used as DAC output (pins PA4
183
         and PA5).
184
    (4): OPAMP3 availability depends on device category.
185
 
186
    Table 2.  OPAMPs outputs for STM32L1 devices:
187
    +--------------------------------------------------------+
188
    |                 |   OPAMP1   |   OPAMP2   |  OPAMP3(4) |
189
    |-----------------|------------|------------|------------|
190
    | Output          |    PA3     |    PB0     |    PC3     |
191
    +--------------------------------------------------------+
192
    (4) : OPAMP3 availability depends on device category
193
*/
194
 
195
/* Includes ------------------------------------------------------------------*/
196
#include "stm32l1xx_hal.h"
197
 
198
/** @addtogroup STM32L1xx_HAL_Driver
199
  * @{
200
  */
201
 
202
/** @defgroup OPAMP OPAMP
203
  * @brief OPAMP module driver
204
  * @{
205
  */
206
 
207
#ifdef HAL_OPAMP_MODULE_ENABLED
208
 
209
#if defined (STM32L151xCA) || defined (STM32L151xD) || defined (STM32L152xCA) || defined (STM32L152xD) || defined (STM32L162xCA) || defined (STM32L162xD) || defined (STM32L151xE) || defined (STM32L151xDX) || defined (STM32L152xE) || defined (STM32L152xDX) || defined (STM32L162xE) || defined (STM32L162xDX) || defined (STM32L162xC) || defined (STM32L152xC) || defined (STM32L151xC)
210
 
211
/* Private typedef -----------------------------------------------------------*/
212
/* Private define ------------------------------------------------------------*/
213
/* Private macro -------------------------------------------------------------*/
214
/* Private variables ---------------------------------------------------------*/
215
/* Private constants ---------------------------------------------------------*/
216
/* Private function prototypes -----------------------------------------------*/
217
/* Private functions ---------------------------------------------------------*/
218
/* Exported functions --------------------------------------------------------*/
219
 
220
/** @defgroup OPAMP_Exported_Functions OPAMP Exported Functions
221
  * @{
222
  */
223
 
224
/** @defgroup OPAMP_Exported_Functions_Group1 Initialization and de-initialization functions
225
 *  @brief    Initialization and Configuration functions
226
 *
227
@verbatim    
228
  ==============================================================================
229
              ##### Initialization and de-initialization functions #####
230
  ==============================================================================
231
   [..]  This section provides functions allowing to:
232
 
233
@endverbatim
234
  * @{
235
  */
236
 
237
/**
238
  * @brief  Initializes the OPAMP according to the specified
239
  *         parameters in the OPAMP_InitTypeDef and create the associated handle.
240
  * @note   If the selected opamp is locked, initialization can't be performed.
241
  *         To unlock the configuration, perform a system reset.
242
  * @param  hopamp OPAMP handle
243
  * @retval HAL status
244
  */
245
HAL_StatusTypeDef HAL_OPAMP_Init(OPAMP_HandleTypeDef* hopamp)
246
{
247
  HAL_StatusTypeDef status = HAL_OK;
248
  uint32_t tmp_csr;       /* Temporary variable to update register CSR, except bits ANAWSSELx, S7SEL2, OPA_RANGE, OPAxCALOUT */
249
 
250
  /* Check the OPAMP handle allocation and lock status */
251
  /* Init not allowed if calibration is ongoing */
252
  if(hopamp == NULL)
253
  {
254
    return HAL_ERROR;
255
  }
256
  else if(hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
257
  {
258
    return HAL_ERROR;
259
  }
260
  else if(hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)
261
  {
262
    return HAL_ERROR;
263
  }
264
  else
265
  {
266
    /* Check the parameter */
267
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
268
 
269
    /* Set OPAMP parameters */
270
    assert_param(IS_OPAMP_POWER_SUPPLY_RANGE(hopamp->Init.PowerSupplyRange));
271
    assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
272
    assert_param(IS_OPAMP_FUNCTIONAL_NORMALMODE(hopamp->Init.Mode));
273
    assert_param(IS_OPAMP_NONINVERTING_INPUT_CHECK_INSTANCE(hopamp, hopamp->Init.NonInvertingInput));
274
    assert_param(IS_OPAMP_TRIMMING(hopamp->Init.UserTrimming));
275
 
61 mjames 276
#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
56 mjames 277
    if(hopamp->State == HAL_OPAMP_STATE_RESET)
278
    {
61 mjames 279
      if(hopamp->MspInitCallback == NULL)
280
      {
281
        hopamp->MspInitCallback               = HAL_OPAMP_MspInit;
282
      }
283
    }
56 mjames 284
#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
285
 
286
    if (hopamp->Init.Mode != OPAMP_FOLLOWER_MODE)
287
    {
288
      assert_param(IS_OPAMP_INVERTING_INPUT(hopamp->Init.InvertingInput));
289
    }
290
 
291
    if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
292
    {
293
      if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
294
      {
295
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueP));
296
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueN));
297
      }
298
      else
299
      {
300
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValuePLowPower));
301
        assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueNLowPower));
302
      }
303
    }
304
 
305
    if(hopamp->State == HAL_OPAMP_STATE_RESET)
306
    {
307
      /* Allocate lock resource and initialize it */
308
      hopamp->Lock = HAL_UNLOCKED;
309
    }
310
 
311
#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
312
    hopamp->MspInitCallback(hopamp);    
313
#else
314
    /* Call MSP init function */
315
    HAL_OPAMP_MspInit(hopamp);
316
#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
317
 
318
    /* Set OPAMP parameters                                                   */
319
    /* - Set internal switches in function of:                                */
320
    /*   - OPAMP selected mode: standalone or follower.                       */
321
    /*   - Non-inverting input connection                                     */
322
    /*   - Inverting input connection                                         */
323
    /* - Set power supply range                                               */
324
    /* - Set power mode and associated calibration parameters                 */
325
 
326
    /* Get OPAMP CSR register into temporary variable */
327
    /* Note: OPAMP register CSR is written directly, independently of OPAMP   */
328
    /*       instance, because all OPAMP settings are dispatched in the same  */
329
    /*       register.                                                        */
330
    /*       Settings of bits for each OPAMP instances are managed case by    */
331
    /*       case using macro (OPAMP_CSR_S3SELX(), OPAMP_CSR_ANAWSELX(), ...) */
332
    tmp_csr = OPAMP->CSR;
333
 
334
    /* Open all switches on non-inverting input, inverting input and output   */
335
    /* feedback.                                                              */
336
    CLEAR_BIT(tmp_csr, OPAMP_CSR_ALL_SWITCHES(hopamp));
337
 
338
    /* Set internal switches in function of OPAMP mode selected: standalone   */
339
    /* or follower.                                                           */
340
    /* If follower mode is selected, feedback switch S3 is closed and         */
341
    /* inverting inputs switches are let opened.                              */
342
    /* If standalone mode is selected, feedback switch S3 is let opened and   */
343
    /* the selected inverting inputs switch is closed.                        */
344
    if (hopamp->Init.Mode == OPAMP_FOLLOWER_MODE)
345
    {
346
      /* Follower mode: Close switches S3 and SanB */
347
      SET_BIT(tmp_csr, OPAMP_CSR_S3SELX(hopamp));
348
    }
349
    else
350
    {
351
      /* Set internal switches in function of inverting input selected:       */
352
      /* Close switch to connect OPAMP inverting input to the selected        */
353
      /* input: dedicated IO pin or alternative IO pin available on some      */
354
      /* device packages.                                                     */
355
      if (hopamp->Init.InvertingInput == OPAMP_INVERTINGINPUT_IO0)
356
      {
357
        /* Close switch to connect OPAMP non-inverting input to               */
358
        /* dedicated IO pin low-leakage.                                      */
359
        SET_BIT(tmp_csr, OPAMP_CSR_S4SELX(hopamp));
360
      }
361
      else
362
      {
363
        /* Close switch to connect OPAMP inverting input to alternative       */
364
        /* IO pin available on some device packages.                          */
365
        SET_BIT(tmp_csr, OPAMP_CSR_ANAWSELX(hopamp));
366
      }
367
    }
368
 
369
    /* Set internal switches in function of non-inverting input selected:     */
370
    /* Close switch to connect OPAMP non-inverting input to the selected      */
371
    /* input: dedicated IO pin or DAC channel.                                */
372
    if (hopamp->Init.NonInvertingInput == OPAMP_NONINVERTINGINPUT_IO0)
373
    {
374
      /* Close switch to connect OPAMP non-inverting input to                 */
375
      /* dedicated IO pin low-leakage.                                        */
376
      SET_BIT(tmp_csr, OPAMP_CSR_S5SELX(hopamp));
377
    }
378
    else if (hopamp->Init.NonInvertingInput == OPAMP_NONINVERTINGINPUT_DAC_CH1)
379
    {
380
 
381
      /* Particular case for connection to DAC channel 1:                     */
382
      /* OPAMP_NONINVERTINGINPUT_DAC_CH1 available on OPAMP1 and OPAMP2 only  */
383
      /* (OPAMP3 availability depends on device category).                    */
384
      if ((hopamp->Instance == OPAMP1) || (hopamp->Instance == OPAMP2))
385
      {
386
        /* Close switch to connect OPAMP non-inverting input to               */
387
        /* DAC channel 1.                                                     */
388
        SET_BIT(tmp_csr, OPAMP_CSR_S6SELX(hopamp));
389
      }
390
      else
391
      {
392
        /* Set HAL status to error if another OPAMP instance as OPAMP1 or     */
393
        /* OPAMP2 is intended to be connected to DAC channel 2.               */
394
        status = HAL_ERROR;
395
      }
396
    }
397
    else /* if (hopamp->Init.NonInvertingInput ==                             */
398
         /*     OPAMP_NONINVERTINGINPUT_DAC_CH2  )                            */
399
    {
400
      /* Particular case for connection to DAC channel 2:                     */
401
      /* OPAMP_NONINVERTINGINPUT_DAC_CH2 available on OPAMP2 and OPAMP3 only  */
402
      /* (OPAMP3 availability depends on device category).                    */
403
      if (hopamp->Instance == OPAMP2)
404
      {
405
        /* Close switch to connect OPAMP non-inverting input to               */
406
        /* DAC channel 2.                                                     */
407
        SET_BIT(tmp_csr, OPAMP_CSR_S7SEL2);
408
      }
409
      /* If OPAMP3 is selected (if available) */
410
      else if (hopamp->Instance != OPAMP1)
411
      {
412
        /* Close switch to connect OPAMP non-inverting input to               */
413
        /* DAC channel 2.                                                     */
414
        SET_BIT(tmp_csr, OPAMP_CSR_S6SELX(hopamp));
415
      }
416
      else
417
      {
418
        /* Set HAL status to error if another OPAMP instance as OPAMP2 or     */
419
        /* OPAMP3 (if available) is intended to be connected to DAC channel 2.*/
420
        status = HAL_ERROR;
421
      }
422
    }
423
 
424
    /* Continue OPAMP configuration if settings of switches are correct */
425
    if (status != HAL_ERROR)
426
    {
427
      /* Set power mode and associated calibration parameters */
428
      if (hopamp->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
429
      {
430
        /* Set normal mode */
431
        CLEAR_BIT(tmp_csr, OPAMP_CSR_OPAXLPM(hopamp));
432
 
433
        if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
434
        {
435
          /* Set calibration mode (factory or user) and values for            */
436
          /* transistors differential pair high (PMOS) and low (NMOS) for     */
437
          /* normal mode.                                                     */
438
          MODIFY_REG(OPAMP->OTR, OPAMP_OTR_OT_USER                                                                     |
439
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, OPAMP_TRIM_VALUE_MASK)       |
440
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, OPAMP_TRIM_VALUE_MASK)        ,
441
                                 hopamp->Init.UserTrimming                                                             |
442
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, hopamp->Init.TrimmingValueN) |
443
                                 OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, hopamp->Init.TrimmingValueP)  );
444
        }
445
        else
446
        {
447
          /* Set calibration mode to factory */
448
          CLEAR_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
449
        }
450
 
451
      }
452
      else
453
      {
454
        /* Set low power mode */
455
        SET_BIT(tmp_csr, OPAMP_CSR_OPAXLPM(hopamp));
456
 
457
        if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
458
        {
459
          /* Set calibration mode to user trimming */
460
          SET_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
461
 
462
          /* Set values for transistors differential pair high (PMOS) and low */
463
          /* (NMOS) for low power mode.                                       */
464
          MODIFY_REG(OPAMP->LPOTR, OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, OPAMP_TRIM_VALUE_MASK)               |
465
                                   OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, OPAMP_TRIM_VALUE_MASK)                ,
466
                                   OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_N, hopamp->Init.TrimmingValueNLowPower) |
467
                                   OPAMP_OFFSET_TRIM_SET(hopamp, OPAMP_FACTORYTRIMMING_P, hopamp->Init.TrimmingValuePLowPower)  );
468
        }
469
        else
470
        {
471
          /* Set calibration mode to factory trimming */
472
          CLEAR_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
473
        }
474
 
475
      }
476
 
477
 
478
      /* Configure the power supply range */
479
      MODIFY_REG(tmp_csr, OPAMP_CSR_AOP_RANGE,
480
                          hopamp->Init.PowerSupplyRange);
481
 
482
      /* Set OPAMP CSR register from temporary variable */
483
      /* This allows to apply all changes on one time, in case of update on   */
484
      /* the fly with OPAMP previously set and running:                       */
485
      /*  - to avoid hazardous transient switches settings (risk of short     */
486
      /*    circuit)                                                          */
487
      /*  - to avoid interruption of input signal                             */
488
      OPAMP->CSR = tmp_csr;
489
 
490
 
491
      /* Update the OPAMP state */
492
      /* If coming from state reset: Update from state RESET to state READY */
493
      if (hopamp->State == HAL_OPAMP_STATE_RESET)
494
      {
495
        hopamp->State = HAL_OPAMP_STATE_READY;
496
      }
497
      /* else: OPAMP state remains READY or BUSY state (no update) */
498
    }
499
  }
500
 
501
  return status;
502
}
503
 
504
/**
505
  * @brief  DeInitializes the OPAMP peripheral
506
  * @note   Deinitialization can be performed if the OPAMP configuration is locked.
507
  *         (the OPAMP lock is SW in STM32L1)
508
  * @param  hopamp OPAMP handle
509
  * @retval HAL status
510
  */
511
HAL_StatusTypeDef HAL_OPAMP_DeInit(OPAMP_HandleTypeDef* hopamp)
512
{
513
  HAL_StatusTypeDef status = HAL_OK;
514
 
515
  /* Check the OPAMP handle allocation */
516
  /* DeInit not allowed if calibration is ongoing */
517
  if(hopamp == NULL)
518
  {
519
    status = HAL_ERROR;
520
  }
521
  else if(hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)
522
  {
523
    status = HAL_ERROR;
524
  }
525
  else
526
  {
527
    /* Check the parameter */
528
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
529
 
530
    /* Disable the selected opamp */
531
    SET_BIT (OPAMP->CSR, OPAMP_CSR_OPAXPD(hopamp));
532
 
533
    /* Open all switches on non-inverting input, inverting input and output   */
534
    /* feedback.                                                              */
535
    /* Note: OPAMP register CSR is written directly, independently of OPAMP   */
536
    /*       instance, because all OPAMP settings are dispatched in the same  */
537
    /*       register.                                                        */
538
    /*       Settings of bits for each OPAMP instances are managed case by    */
539
    /*       case using macro (OPAMP_CSR_S3SELX(), OPAMP_CSR_ANAWSELX(), ...) */
540
    CLEAR_BIT(OPAMP->CSR, OPAMP_CSR_ALL_SWITCHES(hopamp));
541
 
542
    /* Note: Registers and bits shared with other OPAMP instances are kept    */
543
    /*       unchanged, to not impact other OPAMP while operating on the      */
544
    /*       selected OPAMP.                                                  */
545
    /*       Unchanged: bit OPAMP_OTR_OT_USER (parameter "UserTrimming")      */
546
    /*                  bit OPAMP_CSR_AOP_RANGE (parameter "PowerSupplyRange")*/
547
 
548
#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
549
  if(hopamp->MspDeInitCallback == NULL)
550
  {
551
    hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
552
  }
553
  /* DeInit the low level hardware */
554
  hopamp->MspDeInitCallback(hopamp);
555
#else
556
    /* DeInit the low level hardware: GPIO, CLOCK and NVIC */
557
    HAL_OPAMP_MspDeInit(hopamp);
558
#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
559
 
560
    /* Update the OPAMP state*/
561
    hopamp->State = HAL_OPAMP_STATE_RESET;
562
  }
563
 
564
  /* Process unlocked */
565
  __HAL_UNLOCK(hopamp);
566
 
567
  return status;
568
}
569
 
570
/**
571
  * @brief  Initialize the OPAMP MSP.
572
  * @param  hopamp OPAMP handle
573
  * @retval None
574
  */
575
__weak void HAL_OPAMP_MspInit(OPAMP_HandleTypeDef* hopamp)
576
{
577
  /* Prevent unused argument(s) compilation warning */
578
  UNUSED(hopamp);
579
 
580
  /* NOTE : This function should not be modified, when the callback is needed,
581
            the function "HAL_OPAMP_MspInit()" must be implemented in the user file.
582
  */
583
}
584
 
585
/**
586
  * @brief  DeInitialize OPAMP MSP.
587
  * @param  hopamp OPAMP handle
588
  * @retval None
589
  */
590
__weak void HAL_OPAMP_MspDeInit(OPAMP_HandleTypeDef* hopamp)
591
{
592
  /* Prevent unused argument(s) compilation warning */
593
  UNUSED(hopamp);
594
 
595
  /* NOTE : This function should not be modified, when the callback is needed,
596
            the function "HAL_OPAMP_MspDeInit()" must be implemented in the user file.
597
  */
598
}
599
 
600
/**
601
  * @}
602
  */
603
 
604
 
605
/** @defgroup OPAMP_Exported_Functions_Group2 IO operation functions
606
  * @brief   IO operation functions
607
  *
608
@verbatim  
609
 ===============================================================================
610
                        ##### IO operation functions #####
611
 ===============================================================================
612
    [..]
613
    This subsection provides a set of functions allowing to manage the OPAMP
614
    start, stop and calibration actions.
615
 
616
@endverbatim
617
  * @{
618
  */
619
 
620
/**
621
  * @brief  Start the OPAMP.
622
  * @param  hopamp OPAMP handle
623
  * @retval HAL status
624
  */
625
 
626
HAL_StatusTypeDef HAL_OPAMP_Start(OPAMP_HandleTypeDef* hopamp)
627
{
628
  HAL_StatusTypeDef status = HAL_OK;
629
 
630
  /* Check the OPAMP handle allocation */
631
  /* Check if OPAMP locked */
632
  if(hopamp == NULL)
633
  {
634
    status = HAL_ERROR;
635
  }
636
  else if(hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
637
  {
638
    status = HAL_ERROR;
639
  }
640
  else
641
  {
642
    /* Check the parameter */
643
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
644
 
645
    if(hopamp->State == HAL_OPAMP_STATE_READY)
646
    {
647
      /* Enable the selected opamp */
648
      CLEAR_BIT (OPAMP->CSR, OPAMP_CSR_OPAXPD(hopamp));
649
 
650
      /* Update the OPAMP state */
651
      /* From HAL_OPAMP_STATE_READY to HAL_OPAMP_STATE_BUSY */
652
      hopamp->State = HAL_OPAMP_STATE_BUSY;  
653
    }
654
    else
655
    {
656
      status = HAL_ERROR;
657
    }
658
 
659
   }
660
  return status;
661
}
662
 
663
/**
664
  * @brief  Stop the OPAMP.
665
  * @param  hopamp OPAMP handle
666
  * @retval HAL status
667
  */
668
HAL_StatusTypeDef HAL_OPAMP_Stop(OPAMP_HandleTypeDef* hopamp)
669
{
670
  HAL_StatusTypeDef status = HAL_OK;
671
 
672
  /* Check the OPAMP handle allocation */
673
  /* Check if OPAMP locked */
674
  /* Check if OPAMP calibration ongoing */
675
  if(hopamp == NULL)
676
  {
677
    status = HAL_ERROR;
678
  }
679
  else if(hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
680
  {
681
    status = HAL_ERROR;
682
  }
683
  else if(hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)
684
  {
685
    status = HAL_ERROR;
686
  }
687
  else
688
  {
689
    /* Check the parameter */
690
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
691
 
692
    if(hopamp->State == HAL_OPAMP_STATE_BUSY)
693
    {
694
      /* Disable the selected opamp */
695
      SET_BIT (OPAMP->CSR, OPAMP_CSR_OPAXPD(hopamp));
696
 
697
      /* Update the OPAMP state*/    
698
      /* From  HAL_OPAMP_STATE_BUSY to HAL_OPAMP_STATE_READY*/
699
      hopamp->State = HAL_OPAMP_STATE_READY;
700
    }
701
    else
702
    {
703
      status = HAL_ERROR;
704
    }
705
  }
706
  return status;
707
}
708
 
709
/**
710
  * @brief  Run the self calibration of one OPAMP.
711
  * @note   Trimming values (PMOS & NMOS) are updated and user trimming is
712
  *         enabled if calibration is succesful.
713
  * @note   Calibration is performed in the mode specified in OPAMP init
714
  *         structure (mode normal or low-power). To perform calibration for
715
  *         both modes, repeat this function twice after OPAMP init structure
716
  *         accordingly updated.
717
  * @note   Calibration runs about 10 ms.
718
  * @param  hopamp handle
719
  * @retval Updated offset trimming values (PMOS & NMOS), user trimming is enabled
720
  * @retval HAL status
721
  */
722
HAL_StatusTypeDef HAL_OPAMP_SelfCalibrate(OPAMP_HandleTypeDef* hopamp)
61 mjames 723
{
56 mjames 724
  HAL_StatusTypeDef status = HAL_OK;
725
 
726
  uint32_t* opamp_trimmingvalue;
727
  uint32_t opamp_trimmingvaluen = 0;
728
  uint32_t opamp_trimmingvaluep = 0;
729
 
730
  uint32_t trimming_diff_pair;               /* Selection of differential transistors pair high or low */
731
 
732
  __IO uint32_t* tmp_opamp_reg_trimming;     /* Selection of register of trimming depending on power mode: OTR or LPOTR */
733
  uint32_t tmp_opamp_otr_otuser;             /* Selection of bit OPAMP_OTR_OT_USER depending on trimming register pointed: OTR or LPOTR */
734
 
735
  uint32_t tmp_Opaxcalout_DefaultSate;       /* Bit OPAMP_CSR_OPAXCALOUT default state when trimming value is 00000b. Used to detect the bit toggling */
736
 
737
  uint32_t tmp_OpaxSwitchesContextBackup;
738
 
739
  uint8_t trimming_diff_pair_iteration_count;          /* For calibration loop algorithm: to repeat the calibration loop for both differential transistors pair high and low */
740
  uint8_t delta;                                       /* For calibration loop algorithm: Variable for dichotomy steps value */
741
  uint8_t final_step_check = 0x0U;                        /* For calibration loop algorithm: Flag for additional check of last trimming step */
742
 
743
  /* Check the OPAMP handle allocation */
744
  /* Check if OPAMP locked */
745
  if(hopamp == NULL)
746
  {
747
    status = HAL_ERROR;
748
  }
749
  else if(hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED)
750
  {
751
    status = HAL_ERROR;
752
  }
753
  else
754
  {
755
 
756
    /* Check if OPAMP in calibration mode and calibration not yet enable */
757
    if(hopamp->State == HAL_OPAMP_STATE_READY)
758
    {
759
      /* Check the parameter */
760
      assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
761
      assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
762
 
763
      /* Update OPAMP state */
764
      hopamp->State = HAL_OPAMP_STATE_CALIBBUSY;
765
 
766
      /* Backup of switches configuration to restore it at the end of the     */
767
      /* calibration.                                                         */
768
      tmp_OpaxSwitchesContextBackup = READ_BIT(OPAMP->CSR, OPAMP_CSR_ALL_SWITCHES(hopamp));
769
 
770
      /* Open all switches on non-inverting input, inverting input and output */
771
      /* feedback.                                                            */
772
      CLEAR_BIT(OPAMP->CSR, OPAMP_CSR_ALL_SWITCHES(hopamp));
773
 
774
      /* Set calibration mode to user programmed trimming values */
775
      SET_BIT(OPAMP->OTR, OPAMP_OTR_OT_USER);
776
 
777
 
778
      /* Select trimming settings depending on power mode */
779
      if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
780
      {
781
        tmp_opamp_otr_otuser = OPAMP_OTR_OT_USER;
782
        tmp_opamp_reg_trimming = &OPAMP->OTR;
783
      }
784
      else
785
      {
786
        tmp_opamp_otr_otuser = 0x00000000U;
787
        tmp_opamp_reg_trimming = &OPAMP->LPOTR;
788
      }
789
 
790
 
791
      /* Enable the selected opamp */
792
      CLEAR_BIT (OPAMP->CSR, OPAMP_CSR_OPAXPD(hopamp));
793
 
794
      /* Perform trimming for both differential transistors pair high and low */
795
      for (trimming_diff_pair_iteration_count = 0U; trimming_diff_pair_iteration_count <=1U; trimming_diff_pair_iteration_count++)
796
      {
797
        if (trimming_diff_pair_iteration_count == 0U)
798
        {
799
          /* Calibration of transistors differential pair high (NMOS) */
800
          trimming_diff_pair = OPAMP_FACTORYTRIMMING_N;
801
          opamp_trimmingvalue = &opamp_trimmingvaluen;
802
 
803
          /* Set bit OPAMP_CSR_OPAXCALOUT default state when trimming value   */
804
          /* is 00000b. Used to detect the bit toggling during trimming.      */
805
          tmp_Opaxcalout_DefaultSate = 0U;
806
 
807
          /* Enable calibration for N differential pair */
808
          MODIFY_REG(OPAMP->CSR, OPAMP_CSR_OPAXCAL_L(hopamp),
809
                                 OPAMP_CSR_OPAXCAL_H(hopamp) );
810
        }
811
        else /* (trimming_diff_pair_iteration_count == 1) */
812
        {
813
          /* Calibration of transistors differential pair low (PMOS) */
814
          trimming_diff_pair = OPAMP_FACTORYTRIMMING_P;
815
          opamp_trimmingvalue = &opamp_trimmingvaluep;
816
 
817
          /* Set bit OPAMP_CSR_OPAXCALOUT default state when trimming value   */
818
          /* is 00000b. Used to detect the bit toggling during trimming.      */
819
          tmp_Opaxcalout_DefaultSate = OPAMP_CSR_OPAXCALOUT(hopamp);
820
 
821
          /* Enable calibration for P differential pair */
822
          MODIFY_REG(OPAMP->CSR, OPAMP_CSR_OPAXCAL_H(hopamp),
823
                                 OPAMP_CSR_OPAXCAL_L(hopamp) );
824
        }
825
 
826
 
827
        /* Perform calibration parameter search by dichotomy sweep */
828
        /*  - Delta initial value 16: for 5 dichotomy steps: 16 for the       */
829
        /*    initial range, then successive delta sweeps (8, 4, 2, 1).       */
830
        /*    can extend the search range to +/- 15 units.                    */
831
        /*  - Trimming initial value 15: search range will go from 0 to 30    */
832
        /*    (Trimming value 31 is forbidden).                               */
833
        /* Note: After dichotomy sweep, the trimming result is determined.    */
834
        /*       However, the final trimming step is deduced from previous    */
835
        /*       trimming steps tested but is not effectively tested.         */
836
        /*       An additional test step (using variable "final_step_check")  */
837
        /*       allow to Test the final trimming step.                       */
838
        *opamp_trimmingvalue = 15U;
839
        delta = 16U;
840
 
841
        while ((delta != 0U) || (final_step_check == 1U))
842
        {
843
          /* Set candidate trimming */
844
          MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
845
                                              OPAMP_OFFSET_TRIM_SET(hopamp, trimming_diff_pair, *opamp_trimmingvalue) | tmp_opamp_otr_otuser);
846
 
847
          /* Offset trimming time: during calibration, minimum time needed    */
848
          /* between two steps to have 1 mV accuracy.                         */
849
          HAL_Delay(OPAMP_TRIMMING_DELAY);
850
 
851
          /* Set flag for additional check of last trimming step equal to     */
852
          /* dichotomy step before its division by 2 (equivalent to previous  */
853
          /* value of dichotomy step).                                        */
854
          final_step_check = delta;
855
 
856
          /* Divide range by 2 to continue dichotomy sweep */
857
          delta >>= 1;
858
 
859
          /* Set trimming values for next iteration in function of trimming   */
860
          /* result toggle (versus initial state).                            */
861
          /* Note: on the last trimming loop, delta is equal to 0 and         */
862
          /*       therefore has no effect.                                   */
863
          if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp)) != tmp_Opaxcalout_DefaultSate)
864
          {
865
            /* If calibration output is has toggled, try lower trimming */
866
            *opamp_trimmingvalue -= delta;
867
          }
868
          else
869
          {
870
            /* If calibration output is has not toggled, try higher trimming */
871
            *opamp_trimmingvalue += delta;
872
          }
873
 
874
        }
875
 
876
        /* Check trimming result of the selected step and perform final fine  */
877
        /* trimming.                                                          */
878
        /*  - If calibration output is has toggled: the current step is       */
879
        /*    already optimized.                                              */
880
        /*  - If calibration output is has not toggled: the current step can  */
881
        /*    be optimized by incrementing it of one step.                    */
882
        if (READ_BIT(OPAMP->CSR, OPAMP_CSR_OPAXCALOUT(hopamp)) == tmp_Opaxcalout_DefaultSate)
883
        {
884
          *opamp_trimmingvalue += 1U;
885
 
886
          /* Set final fine trimming */
887
          MODIFY_REG(*tmp_opamp_reg_trimming, OPAMP_OFFSET_TRIM_SET(hopamp, trimming_diff_pair, OPAMP_TRIM_VALUE_MASK) ,
888
                                              OPAMP_OFFSET_TRIM_SET(hopamp, trimming_diff_pair, *opamp_trimmingvalue) | tmp_opamp_otr_otuser);
889
        }
890
 
891
      }
892
 
893
 
894
      /* Disable calibration for P and N differential pairs */
895
      /* Disable the selected opamp */
896
      CLEAR_BIT (OPAMP->CSR, (OPAMP_CSR_OPAXCAL_H(hopamp) |
897
                              OPAMP_CSR_OPAXCAL_L(hopamp) |
898
                              OPAMP_CSR_OPAXPD(hopamp))    );
899
 
900
      /* Backup of switches configuration to restore it at the end of the     */
901
      /* calibration.                                                         */
902
      SET_BIT(OPAMP->CSR, tmp_OpaxSwitchesContextBackup);
903
 
904
      /* Self calibration is successful */
905
      /* Store calibration (user trimming) results in init structure. */
906
 
907
      /* Set user trimming mode */  
908
      hopamp->Init.UserTrimming = OPAMP_TRIMMING_USER;
909
 
61 mjames 910
      /* Check on unsupported value */
911
      if(opamp_trimmingvaluep == 0x1FU)  /* 0x1F is not functional */
912
      {
913
        opamp_trimmingvaluep = 30U;
914
      }
915
 
916
      if(opamp_trimmingvaluen == 0x1FU)  /* 0x1F is not functional */
917
      {
918
        opamp_trimmingvaluen = 30U;
919
      }
920
 
56 mjames 921
      /* Affect calibration parameters depending on mode normal/low power */
922
      if (hopamp->Init.PowerMode != OPAMP_POWERMODE_LOWPOWER)
923
      {
924
        /* Write calibration result N */
925
        hopamp->Init.TrimmingValueN = opamp_trimmingvaluen;
926
        /* Write calibration result P */
927
        hopamp->Init.TrimmingValueP = opamp_trimmingvaluep;
928
      }
929
      else
930
      {
931
        /* Write calibration result N */
932
        hopamp->Init.TrimmingValueNLowPower = opamp_trimmingvaluen;
933
        /* Write calibration result P */
934
        hopamp->Init.TrimmingValuePLowPower = opamp_trimmingvaluep;
935
      }
936
 
937
      /* Update OPAMP state */
938
      hopamp->State = HAL_OPAMP_STATE_READY;
939
 
940
    }
941
 
942
    else
943
    {
944
      /* OPAMP can not be calibrated from this mode */
945
      status = HAL_ERROR;
946
    }
947
  }
948
 
949
  return status;
61 mjames 950
 
56 mjames 951
}
952
 
953
/**
954
  * @}
955
  */
956
 
957
/**
958
  * @}
959
  */
960
 
961
/** @defgroup OPAMP_Exported_Functions_Group3 Peripheral Control functions
962
 *  @brief   Peripheral Control functions
963
 *
964
@verbatim  
965
 ===============================================================================
966
                      ##### Peripheral Control functions #####
967
 ===============================================================================  
968
    [..]
969
    This subsection provides a set of functions allowing to control the OPAMP data
970
    transfers.
971
 
972
 
973
 
974
@endverbatim
975
  * @{
976
  */
977
 
978
/**
979
  * @brief  Lock the selected opamp configuration.
980
  *         Caution: On STM32L1, HAL OPAMP lock is software lock only
981
  *         (not hardware lock as available on some other STM32 devices)
982
  * @param  hopamp OPAMP handle
983
  * @retval HAL status
984
  */
985
HAL_StatusTypeDef HAL_OPAMP_Lock(OPAMP_HandleTypeDef* hopamp)
986
{
987
  HAL_StatusTypeDef status = HAL_OK;
988
 
989
  /* Check the OPAMP handle allocation */
990
  /* Check if OPAMP locked */
991
  /* OPAMP can be locked when enabled and running in normal mode */
992
  /*   It is meaningless otherwise */
993
  if(hopamp == NULL)
994
  {
995
    status = HAL_ERROR;
996
  }
997
  else if(hopamp->State == HAL_OPAMP_STATE_BUSY)
998
  {
999
    /* Check the parameter */
1000
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
1001
 
1002
   /* OPAMP state changed to locked */
1003
    hopamp->State = HAL_OPAMP_STATE_BUSYLOCKED;
1004
  }
1005
  else
1006
  {
1007
    status = HAL_ERROR;
1008
  }
1009
  return status;
1010
}
1011
 
1012
/**
1013
  * @brief  Return the OPAMP factory trimming value
1014
  *         Caution: On STM32L1 OPAMP, user can retrieve factory trimming if
1015
  *                  OPAMP has never been set to user trimming before.
1016
  *                  Therefore, this fonction must be called when OPAMP init  
1017
  *                  parameter "UserTrimming" is set to trimming factory,
1018
  *                  and before OPAMP  calibration (function
1019
  *                  "HAL_OPAMP_SelfCalibrate()").
1020
  *                  Otherwise, factory triming value cannot be retrieved and
1021
  *                  error status is returned.
1022
  * @param  hopamp  OPAMP handle
1023
  * @param  trimmingoffset  Trimming offset (P or N)
1024
  *         This parameter must be a value of @ref OPAMP_FactoryTrimming
1025
  * @note   Calibration parameter retrieved is corresponding to the mode
1026
  *         specified in OPAMP init structure (mode normal or low-power).
1027
  *         To retrieve calibration parameters for both modes, repeat this
1028
  *         function after OPAMP init structure accordingly updated.
1029
  * @retval Trimming value (P or N) range: 0->31
1030
  *         or OPAMP_FACTORYTRIMMING_DUMMY if trimming value is not available
1031
  *
1032
  */
1033
HAL_OPAMP_TrimmingValueTypeDef HAL_OPAMP_GetTrimOffset (OPAMP_HandleTypeDef *hopamp, uint32_t trimmingoffset)
1034
{
1035
  HAL_OPAMP_TrimmingValueTypeDef trimmingvalue;
1036
  __IO uint32_t* tmp_opamp_reg_trimming;  /* Selection of register of trimming depending on power mode: OTR or LPOTR */
1037
 
1038
  /* Check the OPAMP handle allocation */
1039
  /* Value can be retrieved in HAL_OPAMP_STATE_READY state */
1040
  if(hopamp == NULL)
1041
  {
1042
    return OPAMP_FACTORYTRIMMING_DUMMY;
1043
  }
1044
 
1045
  /* Check the OPAMP handle allocation */
1046
  /* Value can be retrieved in HAL_OPAMP_STATE_READY state */
1047
  if(hopamp->State == HAL_OPAMP_STATE_READY)
1048
  {
1049
    /* Check the parameter */
1050
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
1051
    assert_param(IS_OPAMP_FACTORYTRIMMING(trimmingoffset));
1052
    assert_param(IS_OPAMP_POWERMODE(hopamp->Init.PowerMode));
1053
 
1054
    /* Check the trimming mode */
1055
    if (hopamp->Init.UserTrimming == OPAMP_TRIMMING_USER)
1056
    {
1057
      /* This fonction must called when OPAMP init parameter "UserTrimming"   */
1058
      /* is set to trimming factory, and before OPAMP calibration (function   */
1059
      /* "HAL_OPAMP_SelfCalibrate()").                                        */
1060
      /* Otherwise, factory triming value cannot be retrieved and error       */
1061
      /* status is returned.                                                  */
1062
      trimmingvalue = OPAMP_FACTORYTRIMMING_DUMMY;
1063
    }
1064
    else
1065
    {
1066
      /* Select trimming settings depending on power mode */
1067
      if (hopamp->Init.PowerMode == OPAMP_POWERMODE_NORMAL)
1068
      {
1069
        tmp_opamp_reg_trimming = &OPAMP->OTR;
1070
      }
1071
      else
1072
      {
1073
        tmp_opamp_reg_trimming = &OPAMP->LPOTR;
1074
      }
1075
 
1076
      /* Get factory trimming  */
1077
      trimmingvalue = ((*tmp_opamp_reg_trimming >> OPAMP_OFFSET_TRIM_BITSPOSITION(hopamp, trimmingoffset)) & OPAMP_TRIM_VALUE_MASK);
1078
    }
1079
  }
1080
  else
1081
  {
1082
    return OPAMP_FACTORYTRIMMING_DUMMY;
1083
  }  
1084
  return trimmingvalue;
1085
}
1086
 
1087
/**
1088
  * @}
1089
  */
1090
 
1091
 
1092
/** @defgroup OPAMP_Exported_Functions_Group4 Peripheral State functions
1093
 *  @brief   Peripheral State functions
1094
 *
1095
@verbatim  
1096
 ===============================================================================
1097
                      ##### Peripheral State functions #####
1098
 ===============================================================================
1099
    [..]
1100
    This subsection permits to get in run-time the status of the peripheral.
1101
 
1102
@endverbatim
1103
  * @{
1104
  */
1105
 
1106
/**
1107
  * @brief  Return the OPAMP handle state.
1108
  * @param  hopamp OPAMP handle
1109
  * @retval HAL state
1110
  */
1111
HAL_OPAMP_StateTypeDef HAL_OPAMP_GetState(OPAMP_HandleTypeDef* hopamp)
1112
{
1113
  /* Check the OPAMP handle allocation */
1114
  if(hopamp == NULL)
1115
  {
1116
    return HAL_OPAMP_STATE_RESET;
1117
  }
1118
 
1119
  /* Check the parameter */
1120
  assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
1121
 
1122
  return hopamp->State;
1123
}
1124
 
1125
#if (USE_HAL_OPAMP_REGISTER_CALLBACKS == 1)
1126
/**
1127
  * @brief  Register a User OPAMP Callback
1128
  *         To be used instead of the weak (surcharged) predefined callback
1129
  * @param hopamp OPAMP handle
1130
  * @param CallbackID ID of the callback to be registered
1131
  *        This parameter can be one of the following values:
1132
  *          @arg @ref HAL_OPAMP_MSPINIT_CB_ID       OPAMP MspInit callback ID
1133
  *          @arg @ref HAL_OPAMP_MSPDEINIT_CB_ID     OPAMP MspDeInit callback ID  
1134
  * @param pCallback pointer to the Callback function
1135
  * @retval status
1136
  */
1137
HAL_StatusTypeDef HAL_OPAMP_RegisterCallback (OPAMP_HandleTypeDef *hopamp, HAL_OPAMP_CallbackIDTypeDef CallbackID, pOPAMP_CallbackTypeDef pCallback)
1138
{
1139
  HAL_StatusTypeDef status = HAL_OK;
1140
 
1141
  if(pCallback == NULL)
1142
  {
1143
    return HAL_ERROR;
1144
  }
1145
 
1146
  /* Process locked */
1147
  __HAL_LOCK(hopamp);
1148
 
1149
  if(hopamp->State == HAL_OPAMP_STATE_READY)
1150
  {
1151
    switch (CallbackID)
1152
    {
1153
    case HAL_OPAMP_MSPINIT_CB_ID :
1154
      hopamp->MspInitCallback = pCallback;
1155
      break;
1156
    case HAL_OPAMP_MSPDEINIT_CB_ID :
1157
      hopamp->MspDeInitCallback = pCallback;
1158
      break;
1159
    default :
1160
      /* Update the error code */
1161
      // hopamp->ErrorCode |= HAL_OPAMP_ERROR_INVALID_CALLBACK; 
1162
      /* update return status */
1163
      status =  HAL_ERROR;
1164
      break;
1165
    }
1166
  }
1167
  else if (hopamp->State == HAL_OPAMP_STATE_RESET)
1168
  {
1169
    switch (CallbackID)
1170
    {
1171
    case HAL_OPAMP_MSPINIT_CB_ID :
1172
      hopamp->MspInitCallback = pCallback;
1173
      break;
1174
    case HAL_OPAMP_MSPDEINIT_CB_ID :
1175
      hopamp->MspDeInitCallback = pCallback;
1176
      break;
1177
    default :
1178
      /* Update the error code */
1179
      // hopamp->ErrorCode |= HAL_OPAMP_ERROR_INVALID_CALLBACK; 
1180
      /* update return status */
1181
      status =  HAL_ERROR;
1182
      break;
1183
    }
1184
  }
1185
  else
1186
  {
1187
    /* update return status */
1188
    status =  HAL_ERROR;
1189
  }
1190
 
1191
  /* Release Lock */
1192
  __HAL_UNLOCK(hopamp);
1193
  return status;
1194
}
1195
 
1196
/**
1197
  * @brief  Unregister a User OPAMP Callback
1198
  *         OPAMP Callback is redirected to the weak (surcharged) predefined callback
1199
  * @param hopamp OPAMP handle
1200
  * @param CallbackID ID of the callback to be unregistered
1201
  *        This parameter can be one of the following values:
1202
  *          @arg @ref HAL_OPAMP_MSPINIT_CB_ID              OPAMP MSP Init Callback ID
1203
  *          @arg @ref HAL_OPAMP_MSPDEINIT_CB_ID            OPAMP MSP DeInit Callback ID
1204
  *          @arg @ref HAL_OPAMP_ALL_CB_ID                   OPAMP All Callbacks
1205
  * @retval status
1206
  */
1207
 
1208
HAL_StatusTypeDef HAL_OPAMP_UnRegisterCallback (OPAMP_HandleTypeDef *hopamp, HAL_OPAMP_CallbackIDTypeDef CallbackID)
1209
{
1210
  HAL_StatusTypeDef status = HAL_OK;
1211
 
1212
  /* Process locked */
1213
  __HAL_LOCK(hopamp);
1214
 
1215
  if(hopamp->State == HAL_OPAMP_STATE_READY)
1216
  {
1217
    switch (CallbackID)
1218
    {    
1219
      case HAL_OPAMP_MSPINIT_CB_ID :
1220
      hopamp->MspInitCallback = HAL_OPAMP_MspInit;
1221
      break;
1222
    case HAL_OPAMP_MSPDEINIT_CB_ID :
1223
      hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
1224
      break;
1225
    case HAL_OPAMP_ALL_CB_ID :
1226
      hopamp->MspInitCallback = HAL_OPAMP_MspInit;
1227
      hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
1228
      break;
1229
    default :
1230
      /* update return status */
1231
      status =  HAL_ERROR;
1232
      break;
1233
    }
1234
  }
1235
  else if (hopamp->State == HAL_OPAMP_STATE_RESET)
1236
  {
1237
    switch (CallbackID)
1238
    {
1239
    case HAL_OPAMP_MSPINIT_CB_ID :
1240
      hopamp->MspInitCallback = HAL_OPAMP_MspInit;
1241
      break;
1242
    case HAL_OPAMP_MSPDEINIT_CB_ID :
1243
      hopamp->MspDeInitCallback = HAL_OPAMP_MspDeInit;
1244
      break;
1245
    default :
1246
      /* update return status */
1247
      status =  HAL_ERROR;
1248
      break;
1249
    }
1250
  }
1251
  else
1252
  {
1253
    /* update return status */
1254
    status =  HAL_ERROR;
1255
  }
1256
 
1257
  /* Release Lock */
1258
  __HAL_UNLOCK(hopamp);
1259
  return status;
1260
}
1261
 
1262
#endif /* USE_HAL_OPAMP_REGISTER_CALLBACKS */
1263
/**
1264
  * @}
1265
  */
1266
 
1267
/**
1268
  * @}
1269
  */
1270
 
1271
#endif /* STM32L151xCA || STM32L151xD || STM32L152xCA || STM32L152xD || STM32L162xCA || STM32L162xD || STM32L151xE || STM32L151xDX || STM32L152xE || STM32L152xDX || STM32L162xE || STM32L162xDX || STM32L162xC || STM32L152xC || STM32L151xC */
1272
 
1273
#endif /* HAL_OPAMP_MODULE_ENABLED */
1274
/**
1275
  * @}
1276
  */
1277
 
1278
/**
1279
  * @}
1280
  */
1281
 
1282
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/