Rev 49 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_mat_mult_q31.c |
||
9 | * |
||
10 | * Description: Q31 matrix multiplication. |
||
11 | * |
||
12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
13 | * |
||
14 | * Redistribution and use in source and binary forms, with or without |
||
15 | * modification, are permitted provided that the following conditions |
||
16 | * are met: |
||
17 | * - Redistributions of source code must retain the above copyright |
||
18 | * notice, this list of conditions and the following disclaimer. |
||
19 | * - Redistributions in binary form must reproduce the above copyright |
||
20 | * notice, this list of conditions and the following disclaimer in |
||
21 | * the documentation and/or other materials provided with the |
||
22 | * distribution. |
||
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
24 | * may be used to endorse or promote products derived from this |
||
25 | * software without specific prior written permission. |
||
26 | * |
||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
38 | * POSSIBILITY OF SUCH DAMAGE. |
||
39 | * -------------------------------------------------------------------- */ |
||
40 | |||
41 | #include "arm_math.h" |
||
42 | |||
43 | /** |
||
44 | * @ingroup groupMatrix |
||
45 | */ |
||
46 | |||
47 | /** |
||
48 | * @addtogroup MatrixMult |
||
49 | * @{ |
||
50 | */ |
||
51 | |||
52 | /** |
||
53 | * @brief Q31 matrix multiplication |
||
54 | * @param[in] *pSrcA points to the first input matrix structure |
||
55 | * @param[in] *pSrcB points to the second input matrix structure |
||
56 | * @param[out] *pDst points to output matrix structure |
||
57 | * @return The function returns either |
||
58 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
59 | * |
||
60 | * @details |
||
61 | * <b>Scaling and Overflow Behavior:</b> |
||
62 | * |
||
63 | * \par |
||
64 | * The function is implemented using an internal 64-bit accumulator. |
||
65 | * The accumulator has a 2.62 format and maintains full precision of the intermediate |
||
66 | * multiplication results but provides only a single guard bit. There is no saturation |
||
67 | * on intermediate additions. Thus, if the accumulator overflows it wraps around and |
||
68 | * distorts the result. The input signals should be scaled down to avoid intermediate |
||
69 | * overflows. The input is thus scaled down by log2(numColsA) bits |
||
70 | * to avoid overflows, as a total of numColsA additions are performed internally. |
||
71 | * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. |
||
72 | * |
||
73 | * \par |
||
74 | * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4. |
||
75 | * |
||
76 | */ |
||
77 | |||
78 | arm_status arm_mat_mult_q31( |
||
79 | const arm_matrix_instance_q31 * pSrcA, |
||
80 | const arm_matrix_instance_q31 * pSrcB, |
||
81 | arm_matrix_instance_q31 * pDst) |
||
82 | { |
||
83 | q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ |
||
84 | q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ |
||
85 | q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ |
||
86 | q31_t *pOut = pDst->pData; /* output data matrix pointer */ |
||
87 | q31_t *px; /* Temporary output data matrix pointer */ |
||
88 | q63_t sum; /* Accumulator */ |
||
89 | uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ |
||
90 | uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ |
||
91 | uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ |
||
92 | |||
93 | #ifndef ARM_MATH_CM0_FAMILY |
||
94 | |||
95 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
96 | |||
97 | uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ |
||
98 | arm_status status; /* status of matrix multiplication */ |
||
99 | q31_t a0, a1, a2, a3, b0, b1, b2, b3; |
||
100 | |||
101 | #ifdef ARM_MATH_MATRIX_CHECK |
||
102 | |||
103 | |||
104 | /* Check for matrix mismatch condition */ |
||
105 | if((pSrcA->numCols != pSrcB->numRows) || |
||
106 | (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) |
||
107 | { |
||
108 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
109 | status = ARM_MATH_SIZE_MISMATCH; |
||
110 | } |
||
111 | else |
||
112 | #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ |
||
113 | |||
114 | { |
||
115 | /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ |
||
116 | /* row loop */ |
||
117 | do |
||
118 | { |
||
119 | /* Output pointer is set to starting address of the row being processed */ |
||
120 | px = pOut + i; |
||
121 | |||
122 | /* For every row wise process, the column loop counter is to be initiated */ |
||
123 | col = numColsB; |
||
124 | |||
125 | /* For every row wise process, the pIn2 pointer is set |
||
126 | ** to the starting address of the pSrcB data */ |
||
127 | pIn2 = pSrcB->pData; |
||
128 | |||
129 | j = 0u; |
||
130 | |||
131 | /* column loop */ |
||
132 | do |
||
133 | { |
||
134 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
135 | sum = 0; |
||
136 | |||
137 | /* Initiate the pointer pIn1 to point to the starting address of pInA */ |
||
138 | pIn1 = pInA; |
||
139 | |||
140 | /* Apply loop unrolling and compute 4 MACs simultaneously. */ |
||
141 | colCnt = numColsA >> 2; |
||
142 | |||
143 | |||
144 | /* matrix multiplication */ |
||
145 | while(colCnt > 0u) |
||
146 | { |
||
147 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
148 | /* Perform the multiply-accumulates */ |
||
149 | b0 = *pIn2; |
||
150 | pIn2 += numColsB; |
||
151 | |||
152 | a0 = *pIn1++; |
||
153 | a1 = *pIn1++; |
||
154 | |||
155 | b1 = *pIn2; |
||
156 | pIn2 += numColsB; |
||
157 | b2 = *pIn2; |
||
158 | pIn2 += numColsB; |
||
159 | |||
160 | sum += (q63_t) a0 *b0; |
||
161 | sum += (q63_t) a1 *b1; |
||
162 | |||
163 | a2 = *pIn1++; |
||
164 | a3 = *pIn1++; |
||
165 | |||
166 | b3 = *pIn2; |
||
167 | pIn2 += numColsB; |
||
168 | |||
169 | sum += (q63_t) a2 *b2; |
||
170 | sum += (q63_t) a3 *b3; |
||
171 | |||
172 | /* Decrement the loop counter */ |
||
173 | colCnt--; |
||
174 | } |
||
175 | |||
176 | /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. |
||
177 | ** No loop unrolling is used. */ |
||
178 | colCnt = numColsA % 0x4u; |
||
179 | |||
180 | while(colCnt > 0u) |
||
181 | { |
||
182 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
183 | /* Perform the multiply-accumulates */ |
||
184 | sum += (q63_t) * pIn1++ * *pIn2; |
||
185 | pIn2 += numColsB; |
||
186 | |||
187 | /* Decrement the loop counter */ |
||
188 | colCnt--; |
||
189 | } |
||
190 | |||
191 | /* Convert the result from 2.62 to 1.31 format and store in destination buffer */ |
||
192 | *px++ = (q31_t) (sum >> 31); |
||
193 | |||
194 | /* Update the pointer pIn2 to point to the starting address of the next column */ |
||
195 | j++; |
||
196 | pIn2 = (pSrcB->pData) + j; |
||
197 | |||
198 | /* Decrement the column loop counter */ |
||
199 | col--; |
||
200 | |||
201 | } while(col > 0u); |
||
202 | |||
203 | #else |
||
204 | |||
205 | /* Run the below code for Cortex-M0 */ |
||
206 | |||
207 | q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */ |
||
208 | uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */ |
||
209 | arm_status status; /* status of matrix multiplication */ |
||
210 | |||
211 | |||
212 | #ifdef ARM_MATH_MATRIX_CHECK |
||
213 | |||
214 | /* Check for matrix mismatch condition */ |
||
215 | if((pSrcA->numCols != pSrcB->numRows) || |
||
216 | (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) |
||
217 | { |
||
218 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
219 | status = ARM_MATH_SIZE_MISMATCH; |
||
220 | } |
||
221 | else |
||
222 | #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ |
||
223 | |||
224 | { |
||
225 | /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ |
||
226 | /* row loop */ |
||
227 | do |
||
228 | { |
||
229 | /* Output pointer is set to starting address of the row being processed */ |
||
230 | px = pOut + i; |
||
231 | |||
232 | /* For every row wise process, the column loop counter is to be initiated */ |
||
233 | col = numColsB; |
||
234 | |||
235 | /* For every row wise process, the pIn2 pointer is set |
||
236 | ** to the starting address of the pSrcB data */ |
||
237 | pIn2 = pSrcB->pData; |
||
238 | |||
239 | /* column loop */ |
||
240 | do |
||
241 | { |
||
242 | /* Set the variable sum, that acts as accumulator, to zero */ |
||
243 | sum = 0; |
||
244 | |||
245 | /* Initiate the pointer pIn1 to point to the starting address of pInA */ |
||
246 | pIn1 = pInA; |
||
247 | |||
248 | /* Matrix A columns number of MAC operations are to be performed */ |
||
249 | colCnt = numColsA; |
||
250 | |||
251 | /* matrix multiplication */ |
||
252 | while(colCnt > 0u) |
||
253 | { |
||
254 | /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ |
||
255 | /* Perform the multiply-accumulates */ |
||
256 | sum += (q63_t) * pIn1++ * *pIn2; |
||
257 | pIn2 += numColsB; |
||
258 | |||
259 | /* Decrement the loop counter */ |
||
260 | colCnt--; |
||
261 | } |
||
262 | |||
263 | /* Convert the result from 2.62 to 1.31 format and store in destination buffer */ |
||
264 | *px++ = (q31_t) clip_q63_to_q31(sum >> 31); |
||
265 | |||
266 | /* Decrement the column loop counter */ |
||
267 | col--; |
||
268 | |||
269 | /* Update the pointer pIn2 to point to the starting address of the next column */ |
||
270 | pIn2 = pInB + (numColsB - col); |
||
271 | |||
272 | } while(col > 0u); |
||
273 | |||
274 | #endif |
||
275 | |||
276 | /* Update the pointer pInA to point to the starting address of the next row */ |
||
277 | i = i + numColsB; |
||
278 | pInA = pInA + numColsA; |
||
279 | |||
280 | /* Decrement the row loop counter */ |
||
281 | row--; |
||
282 | |||
283 | } while(row > 0u); |
||
284 | |||
285 | /* set status as ARM_MATH_SUCCESS */ |
||
286 | status = ARM_MATH_SUCCESS; |
||
287 | } |
||
288 | /* Return to application */ |
||
289 | return (status); |
||
290 | } |
||
291 | |||
292 | /** |
||
293 | * @} end of MatrixMult group |
||
294 | */ |