Subversion Repositories DashDisplay

Rev

Rev 49 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------    
2
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
3
*    
4
* $Date:        19. March 2015
5
* $Revision:    V.1.4.5
6
*    
7
* Project:          CMSIS DSP Library    
8
* Title:            arm_mat_mult_q15.c    
9
*    
10
* Description:   Q15 matrix multiplication.    
11
*    
12
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13
*  
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
*   - Redistributions of source code must retain the above copyright
18
*     notice, this list of conditions and the following disclaimer.
19
*   - Redistributions in binary form must reproduce the above copyright
20
*     notice, this list of conditions and the following disclaimer in
21
*     the documentation and/or other materials provided with the
22
*     distribution.
23
*   - Neither the name of ARM LIMITED nor the names of its contributors
24
*     may be used to endorse or promote products derived from this
25
*     software without specific prior written permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38
* POSSIBILITY OF SUCH DAMAGE.    
39
* -------------------------------------------------------------------- */
40
 
41
#include "arm_math.h"
42
 
43
/**    
44
 * @ingroup groupMatrix    
45
 */
46
 
47
/**    
48
 * @addtogroup MatrixMult    
49
 * @{    
50
 */
51
 
52
 
53
/**    
54
 * @brief Q15 matrix multiplication    
55
 * @param[in]       *pSrcA points to the first input matrix structure    
56
 * @param[in]       *pSrcB points to the second input matrix structure    
57
 * @param[out]      *pDst points to output matrix structure    
58
 * @param[in]           *pState points to the array for storing intermediate results (Unused)  
59
 * @return              The function returns either    
60
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
61
 *    
62
 * @details    
63
 * <b>Scaling and Overflow Behavior:</b>    
64
 *    
65
 * \par    
66
 * The function is implemented using a 64-bit internal accumulator. The inputs to the    
67
 * multiplications are in 1.15 format and multiplications yield a 2.30 result.    
68
 * The 2.30 intermediate    
69
 * results are accumulated in a 64-bit accumulator in 34.30 format. This approach    
70
 * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then    
71
 * truncated to 34.15 format by discarding the low 15 bits and then saturated to    
72
 * 1.15 format.    
73
 *    
74
 * \par    
75
 * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.    
76
 *    
77
 */
78
 
79
arm_status arm_mat_mult_q15(
80
  const arm_matrix_instance_q15 * pSrcA,
81
  const arm_matrix_instance_q15 * pSrcB,
82
  arm_matrix_instance_q15 * pDst,
83
  q15_t * pState CMSIS_UNUSED)
84
{
85
  q63_t sum;                                     /* accumulator */
86
 
87
#ifndef ARM_MATH_CM0_FAMILY
88
 
89
  /* Run the below code for Cortex-M4 and Cortex-M3 */
90
 
91
  q15_t *pSrcBT = pState;                        /* input data matrix pointer for transpose */
92
  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
93
  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
94
  q15_t *px;                                     /* Temporary output data matrix pointer */
95
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
96
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
97
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
98
  uint16_t numRowsB = pSrcB->numRows;            /* number of rows of input matrix A    */
99
  uint16_t col, i = 0u, row = numRowsB, colCnt;  /* loop counters */
100
  arm_status status;                             /* status of matrix multiplication */
101
 
102
#ifndef UNALIGNED_SUPPORT_DISABLE
103
 
104
  q31_t in;                                      /* Temporary variable to hold the input value */
105
  q31_t pSourceA1, pSourceB1, pSourceA2, pSourceB2;
106
 
107
#else
108
 
109
  q15_t in;                                      /* Temporary variable to hold the input value */
110
  q15_t inA1, inB1, inA2, inB2;
111
 
112
#endif  /*      #ifndef UNALIGNED_SUPPORT_DISABLE       */
113
 
114
#ifdef ARM_MATH_MATRIX_CHECK
115
  /* Check for matrix mismatch condition */
116
  if((pSrcA->numCols != pSrcB->numRows) ||
117
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
118
  {
119
    /* Set status as ARM_MATH_SIZE_MISMATCH */
120
    status = ARM_MATH_SIZE_MISMATCH;
121
  }
122
  else
123
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
124
  {
125
    /* Matrix transpose */
126
    do
127
    {
128
      /* Apply loop unrolling and exchange the columns with row elements */
129
      col = numColsB >> 2;
130
 
131
      /* The pointer px is set to starting address of the column being processed */
132
      px = pSrcBT + i;
133
 
134
      /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
135
       ** a second loop below computes the remaining 1 to 3 samples. */
136
      while(col > 0u)
137
      {
138
#ifndef UNALIGNED_SUPPORT_DISABLE
139
 
140
        /* Read two elements from the row */
141
        in = *__SIMD32(pInB)++;
142
 
143
        /* Unpack and store one element in the destination */
144
#ifndef ARM_MATH_BIG_ENDIAN
145
 
146
        *px = (q15_t) in;
147
 
148
#else
149
 
150
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
151
 
152
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
153
 
154
        /* Update the pointer px to point to the next row of the transposed matrix */
155
        px += numRowsB;
156
 
157
        /* Unpack and store the second element in the destination */
158
#ifndef ARM_MATH_BIG_ENDIAN
159
 
160
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
161
 
162
#else
163
 
164
        *px = (q15_t) in;
165
 
166
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
167
 
168
        /* Update the pointer px to point to the next row of the transposed matrix */
169
        px += numRowsB;
170
 
171
        /* Read two elements from the row */
172
        in = *__SIMD32(pInB)++;
173
 
174
        /* Unpack and store one element in the destination */
175
#ifndef ARM_MATH_BIG_ENDIAN
176
 
177
        *px = (q15_t) in;
178
 
179
#else
180
 
181
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
182
 
183
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
184
 
185
        /* Update the pointer px to point to the next row of the transposed matrix */
186
        px += numRowsB;
187
 
188
        /* Unpack and store the second element in the destination */
189
 
190
#ifndef ARM_MATH_BIG_ENDIAN
191
 
192
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
193
 
194
#else
195
 
196
        *px = (q15_t) in;
197
 
198
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
199
 
200
        /* Update the pointer px to point to the next row of the transposed matrix */
201
        px += numRowsB;
202
 
203
#else
204
 
205
        /* Read one element from the row */
206
        in = *pInB++;
207
 
208
        /* Store one element in the destination */
209
        *px = in;
210
 
211
        /* Update the pointer px to point to the next row of the transposed matrix */
212
        px += numRowsB;
213
 
214
        /* Read one element from the row */
215
        in = *pInB++;
216
 
217
        /* Store one element in the destination */
218
        *px = in;
219
 
220
        /* Update the pointer px to point to the next row of the transposed matrix */
221
        px += numRowsB;
222
 
223
        /* Read one element from the row */
224
        in = *pInB++;
225
 
226
        /* Store one element in the destination */
227
        *px = in;
228
 
229
        /* Update the pointer px to point to the next row of the transposed matrix */
230
        px += numRowsB;
231
 
232
        /* Read one element from the row */
233
        in = *pInB++;
234
 
235
        /* Store one element in the destination */
236
        *px = in;
237
 
238
        /* Update the pointer px to point to the next row of the transposed matrix */
239
        px += numRowsB;
240
 
241
#endif  /*      #ifndef UNALIGNED_SUPPORT_DISABLE       */
242
 
243
       /* Decrement the column loop counter */
244
        col--;
245
      }
246
 
247
      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.        
248
       ** No loop unrolling is used. */
249
      col = numColsB % 0x4u;
250
 
251
      while(col > 0u)
252
      {
253
        /* Read and store the input element in the destination */
254
        *px = *pInB++;
255
 
256
        /* Update the pointer px to point to the next row of the transposed matrix */
257
        px += numRowsB;
258
 
259
        /* Decrement the column loop counter */
260
        col--;
261
      }
262
 
263
      i++;
264
 
265
      /* Decrement the row loop counter */
266
      row--;
267
 
268
    } while(row > 0u);
269
 
270
    /* Reset the variables for the usage in the following multiplication process */
271
    row = numRowsA;
272
    i = 0u;
273
    px = pDst->pData;
274
 
275
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
276
    /* row loop */
277
    do
278
    {
279
      /* For every row wise process, the column loop counter is to be initiated */
280
      col = numColsB;
281
 
282
      /* For every row wise process, the pIn2 pointer is set        
283
       ** to the starting address of the transposed pSrcB data */
284
      pInB = pSrcBT;
285
 
286
      /* column loop */
287
      do
288
      {
289
        /* Set the variable sum, that acts as accumulator, to zero */
290
        sum = 0;
291
 
292
        /* Apply loop unrolling and compute 2 MACs simultaneously. */
293
        colCnt = numColsA >> 2;
294
 
295
        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
296
        pInA = pSrcA->pData + i;
297
 
298
 
299
        /* matrix multiplication */
300
        while(colCnt > 0u)
301
        {
302
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
303
#ifndef UNALIGNED_SUPPORT_DISABLE
304
 
305
          /* read real and imag values from pSrcA and pSrcB buffer */
306
          pSourceA1 = *__SIMD32(pInA)++;
307
          pSourceB1 = *__SIMD32(pInB)++;
308
 
309
          pSourceA2 = *__SIMD32(pInA)++;
310
          pSourceB2 = *__SIMD32(pInB)++;
311
 
312
          /* Multiply and Accumlates */
313
          sum = __SMLALD(pSourceA1, pSourceB1, sum);
314
          sum = __SMLALD(pSourceA2, pSourceB2, sum);
315
 
316
#else
317
          /* read real and imag values from pSrcA and pSrcB buffer */
318
          inA1 = *pInA++;
319
          inB1 = *pInB++;
320
          inA2 = *pInA++;
321
          /* Multiply and Accumlates */
322
          sum += inA1 * inB1;
323
          inB2 = *pInB++;
324
 
325
          inA1 = *pInA++;
326
          inB1 = *pInB++;
327
          /* Multiply and Accumlates */
328
          sum += inA2 * inB2;
329
          inA2 = *pInA++;
330
          inB2 = *pInB++;
331
 
332
          /* Multiply and Accumlates */
333
          sum += inA1 * inB1;
334
          sum += inA2 * inB2;
335
 
336
#endif  /*      #ifndef UNALIGNED_SUPPORT_DISABLE       */
337
 
338
          /* Decrement the loop counter */
339
          colCnt--;
340
        }
341
 
342
        /* process remaining column samples */
343
        colCnt = numColsA & 3u;
344
 
345
        while(colCnt > 0u)
346
        {
347
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
348
          sum += *pInA++ * *pInB++;
349
 
350
          /* Decrement the loop counter */
351
          colCnt--;
352
        }
353
 
354
        /* Saturate and store the result in the destination buffer */
355
        *px = (q15_t) (__SSAT((sum >> 15), 16));
356
        px++;
357
 
358
        /* Decrement the column loop counter */
359
        col--;
360
 
361
      } while(col > 0u);
362
 
363
      i = i + numColsA;
364
 
365
      /* Decrement the row loop counter */
366
      row--;
367
 
368
    } while(row > 0u);
369
 
370
#else
371
 
372
  /* Run the below code for Cortex-M0 */
373
 
374
  q15_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
375
  q15_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
376
  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
377
  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
378
  q15_t *pOut = pDst->pData;                     /* output data matrix pointer */
379
  q15_t *px;                                     /* Temporary output data matrix pointer */
380
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
381
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
382
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
383
  uint16_t col, i = 0u, row = numRowsA, colCnt;  /* loop counters */
384
  arm_status status;                             /* status of matrix multiplication */
385
 
386
#ifdef ARM_MATH_MATRIX_CHECK
387
 
388
  /* Check for matrix mismatch condition */
389
  if((pSrcA->numCols != pSrcB->numRows) ||
390
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
391
  {
392
    /* Set status as ARM_MATH_SIZE_MISMATCH */
393
    status = ARM_MATH_SIZE_MISMATCH;
394
  }
395
  else
396
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
397
 
398
  {
399
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
400
    /* row loop */
401
    do
402
    {
403
      /* Output pointer is set to starting address of the row being processed */
404
      px = pOut + i;
405
 
406
      /* For every row wise process, the column loop counter is to be initiated */
407
      col = numColsB;
408
 
409
      /* For every row wise process, the pIn2 pointer is set          
410
       ** to the starting address of the pSrcB data */
411
      pIn2 = pSrcB->pData;
412
 
413
      /* column loop */
414
      do
415
      {
416
        /* Set the variable sum, that acts as accumulator, to zero */
417
        sum = 0;
418
 
419
        /* Initiate the pointer pIn1 to point to the starting address of pSrcA */
420
        pIn1 = pInA;
421
 
422
        /* Matrix A columns number of MAC operations are to be performed */
423
        colCnt = numColsA;
424
 
425
        /* matrix multiplication */
426
        while(colCnt > 0u)
427
        {
428
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
429
          /* Perform the multiply-accumulates */
430
          sum += (q31_t) * pIn1++ * *pIn2;
431
          pIn2 += numColsB;
432
 
433
          /* Decrement the loop counter */
434
          colCnt--;
435
        }
436
 
437
        /* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
438
        /* Saturate and store the result in the destination buffer */
439
        *px++ = (q15_t) __SSAT((sum >> 15), 16);
440
 
441
        /* Decrement the column loop counter */
442
        col--;
443
 
444
        /* Update the pointer pIn2 to point to the  starting address of the next column */
445
        pIn2 = pInB + (numColsB - col);
446
 
447
      } while(col > 0u);
448
 
449
      /* Update the pointer pSrcA to point to the  starting address of the next row */
450
      i = i + numColsB;
451
      pInA = pInA + numColsA;
452
 
453
      /* Decrement the row loop counter */
454
      row--;
455
 
456
    } while(row > 0u);
457
 
458
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
459
    /* set status as ARM_MATH_SUCCESS */
460
    status = ARM_MATH_SUCCESS;
461
  }
462
 
463
  /* Return to application */
464
  return (status);
465
}
466
 
467
/**        
468
 * @} end of MatrixMult group        
469
 */