Subversion Repositories DashDisplay

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
56 mjames 1
/* ----------------------------------------------------------------------
2
 * Project:      CMSIS DSP Library
3
 * Title:        arm_cfft_q15.c
4
 * Description:  Combined Radix Decimation in Q15 Frequency CFFT processing function
5
 *
6
 * $Date:        27. January 2017
7
 * $Revision:    V.1.5.1
8
 *
9
 * Target Processor: Cortex-M cores
10
 * -------------------------------------------------------------------- */
11
/*
12
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
13
 *
14
 * SPDX-License-Identifier: Apache-2.0
15
 *
16
 * Licensed under the Apache License, Version 2.0 (the License); you may
17
 * not use this file except in compliance with the License.
18
 * You may obtain a copy of the License at
19
 *
20
 * www.apache.org/licenses/LICENSE-2.0
21
 *
22
 * Unless required by applicable law or agreed to in writing, software
23
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
 * See the License for the specific language governing permissions and
26
 * limitations under the License.
27
 */
28
 
29
#include "arm_math.h"
30
 
31
extern void arm_radix4_butterfly_q15(
32
    q15_t * pSrc,
33
    uint32_t fftLen,
34
    q15_t * pCoef,
35
    uint32_t twidCoefModifier);
36
 
37
extern void arm_radix4_butterfly_inverse_q15(
38
    q15_t * pSrc,
39
    uint32_t fftLen,
40
    q15_t * pCoef,
41
    uint32_t twidCoefModifier);
42
 
43
extern void arm_bitreversal_16(
44
    uint16_t * pSrc,
45
    const uint16_t bitRevLen,
46
    const uint16_t * pBitRevTable);
47
 
48
void arm_cfft_radix4by2_q15(
49
    q15_t * pSrc,
50
    uint32_t fftLen,
51
    const q15_t * pCoef);
52
 
53
void arm_cfft_radix4by2_inverse_q15(
54
    q15_t * pSrc,
55
    uint32_t fftLen,
56
    const q15_t * pCoef);
57
 
58
/**
59
* @ingroup groupTransforms
60
*/
61
 
62
/**
63
* @addtogroup ComplexFFT
64
* @{
65
*/
66
 
67
/**
68
* @details
69
* @brief       Processing function for the Q15 complex FFT.
70
* @param[in]      *S    points to an instance of the Q15 CFFT structure.
71
* @param[in, out] *p1   points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
72
* @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
73
* @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
74
* @return none.
75
*/
76
 
77
void arm_cfft_q15(
78
    const arm_cfft_instance_q15 * S,
79
    q15_t * p1,
80
    uint8_t ifftFlag,
81
    uint8_t bitReverseFlag)
82
{
83
    uint32_t L = S->fftLen;
84
 
85
    if (ifftFlag == 1U)
86
    {
87
        switch (L)
88
        {
89
        case 16:
90
        case 64:
91
        case 256:
92
        case 1024:
93
        case 4096:
94
            arm_radix4_butterfly_inverse_q15  ( p1, L, (q15_t*)S->pTwiddle, 1 );
95
            break;
96
 
97
        case 32:
98
        case 128:
99
        case 512:
100
        case 2048:
101
            arm_cfft_radix4by2_inverse_q15  ( p1, L, S->pTwiddle );
102
            break;
103
        }
104
    }
105
    else
106
    {
107
        switch (L)
108
        {
109
        case 16:
110
        case 64:
111
        case 256:
112
        case 1024:
113
        case 4096:
114
            arm_radix4_butterfly_q15  ( p1, L, (q15_t*)S->pTwiddle, 1 );
115
            break;
116
 
117
        case 32:
118
        case 128:
119
        case 512:
120
        case 2048:
121
            arm_cfft_radix4by2_q15  ( p1, L, S->pTwiddle );
122
            break;
123
        }
124
    }
125
 
126
    if ( bitReverseFlag )
127
        arm_bitreversal_16((uint16_t*)p1,S->bitRevLength,S->pBitRevTable);
128
}
129
 
130
/**
131
* @} end of ComplexFFT group
132
*/
133
 
134
void arm_cfft_radix4by2_q15(
135
    q15_t * pSrc,
136
    uint32_t fftLen,
137
    const q15_t * pCoef)
138
{
139
    uint32_t i;
140
    uint32_t n2;
141
    q15_t p0, p1, p2, p3;
142
#if defined (ARM_MATH_DSP)
143
    q31_t T, S, R;
144
    q31_t coeff, out1, out2;
145
    const q15_t *pC = pCoef;
146
    q15_t *pSi = pSrc;
147
    q15_t *pSl = pSrc + fftLen;
148
#else
149
    uint32_t ia, l;
150
    q15_t xt, yt, cosVal, sinVal;
151
#endif
152
 
153
    n2 = fftLen >> 1;
154
 
155
#if defined (ARM_MATH_DSP)
156
 
157
    for (i = n2; i > 0; i--)
158
    {
159
        coeff = _SIMD32_OFFSET(pC);
160
        pC += 2;
161
 
162
        T = _SIMD32_OFFSET(pSi);
163
        T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
164
 
165
        S = _SIMD32_OFFSET(pSl);
166
        S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1
167
 
168
        R = __QSUB16(T, S);
169
 
170
        _SIMD32_OFFSET(pSi) = __SHADD16(T, S);
171
        pSi += 2;
172
 
173
    #ifndef ARM_MATH_BIG_ENDIAN
174
 
175
        out1 = __SMUAD(coeff, R) >> 16;
176
        out2 = __SMUSDX(coeff, R);
177
 
178
    #else
179
 
180
        out1 = __SMUSDX(R, coeff) >> 16U;
181
        out2 = __SMUAD(coeff, R);
182
 
183
    #endif //     #ifndef ARM_MATH_BIG_ENDIAN
184
 
185
        _SIMD32_OFFSET(pSl) =
186
        (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
187
        pSl += 2;
188
    }
189
 
190
#else //    #if defined (ARM_MATH_DSP)
191
 
192
    ia = 0;
193
    for (i = 0; i < n2; i++)
194
    {
195
        cosVal = pCoef[ia * 2];
196
        sinVal = pCoef[(ia * 2) + 1];
197
        ia++;
198
 
199
        l = i + n2;
200
 
201
        xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
202
        pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
203
 
204
        yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
205
        pSrc[2 * i + 1] =
206
        ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
207
 
208
        pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
209
                  ((int16_t) (((q31_t) yt * sinVal) >> 16)));
210
 
211
        pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
212
                       ((int16_t) (((q31_t) xt * sinVal) >> 16)));
213
    }
214
 
215
#endif //    #if defined (ARM_MATH_DSP)
216
 
217
    // first col
218
    arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2U);
219
    // second col
220
    arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
221
 
222
    for (i = 0; i < fftLen >> 1; i++)
223
    {
224
        p0 = pSrc[4*i+0];
225
        p1 = pSrc[4*i+1];
226
        p2 = pSrc[4*i+2];
227
        p3 = pSrc[4*i+3];
228
 
229
        p0 <<= 1;
230
        p1 <<= 1;
231
        p2 <<= 1;
232
        p3 <<= 1;
233
 
234
        pSrc[4*i+0] = p0;
235
        pSrc[4*i+1] = p1;
236
        pSrc[4*i+2] = p2;
237
        pSrc[4*i+3] = p3;
238
    }
239
}
240
 
241
void arm_cfft_radix4by2_inverse_q15(
242
    q15_t * pSrc,
243
    uint32_t fftLen,
244
    const q15_t * pCoef)
245
{
246
    uint32_t i;
247
    uint32_t n2;
248
    q15_t p0, p1, p2, p3;
249
#if defined (ARM_MATH_DSP)
250
    q31_t T, S, R;
251
    q31_t coeff, out1, out2;
252
    const q15_t *pC = pCoef;
253
    q15_t *pSi = pSrc;
254
    q15_t *pSl = pSrc + fftLen;
255
#else
256
    uint32_t ia, l;
257
    q15_t xt, yt, cosVal, sinVal;
258
#endif
259
 
260
    n2 = fftLen >> 1;
261
 
262
#if defined (ARM_MATH_DSP)
263
 
264
    for (i = n2; i > 0; i--)
265
    {
266
        coeff = _SIMD32_OFFSET(pC);
267
        pC += 2;
268
 
269
        T = _SIMD32_OFFSET(pSi);
270
        T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
271
 
272
        S = _SIMD32_OFFSET(pSl);
273
        S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1
274
 
275
        R = __QSUB16(T, S);
276
 
277
        _SIMD32_OFFSET(pSi) = __SHADD16(T, S);
278
        pSi += 2;
279
 
280
    #ifndef ARM_MATH_BIG_ENDIAN
281
 
282
        out1 = __SMUSD(coeff, R) >> 16;
283
        out2 = __SMUADX(coeff, R);
284
    #else
285
 
286
        out1 = __SMUADX(R, coeff) >> 16U;
287
        out2 = __SMUSD(__QSUB(0, coeff), R);
288
 
289
    #endif //     #ifndef ARM_MATH_BIG_ENDIAN
290
 
291
        _SIMD32_OFFSET(pSl) =
292
        (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
293
        pSl += 2;
294
    }
295
 
296
#else //    #if defined (ARM_MATH_DSP)
297
 
298
    ia = 0;
299
    for (i = 0; i < n2; i++)
300
    {
301
        cosVal = pCoef[ia * 2];
302
        sinVal = pCoef[(ia * 2) + 1];
303
        ia++;
304
 
305
        l = i + n2;
306
        xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
307
        pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
308
 
309
        yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
310
        pSrc[2 * i + 1] =
311
          ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
312
 
313
        pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
314
                        ((int16_t) (((q31_t) yt * sinVal) >> 16)));
315
 
316
        pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
317
                           ((int16_t) (((q31_t) xt * sinVal) >> 16)));
318
    }
319
 
320
#endif //    #if defined (ARM_MATH_DSP)
321
 
322
    // first col
323
    arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2U);
324
    // second col
325
    arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
326
 
327
    for (i = 0; i < fftLen >> 1; i++)
328
    {
329
        p0 = pSrc[4*i+0];
330
        p1 = pSrc[4*i+1];
331
        p2 = pSrc[4*i+2];
332
        p3 = pSrc[4*i+3];
333
 
334
        p0 <<= 1;
335
        p1 <<= 1;
336
        p2 <<= 1;
337
        p3 <<= 1;
338
 
339
        pSrc[4*i+0] = p0;
340
        pSrc[4*i+1] = p1;
341
        pSrc[4*i+2] = p2;
342
        pSrc[4*i+3] = p3;
343
    }
344
}
345