Go to most recent revision | Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /********************************************************************* |
| 2 | This is a library for our Monochrome OLEDs based on SSD1306 drivers |
||
| 3 | |||
| 4 | Pick one up today in the adafruit shop! |
||
| 5 | ------> http://www.adafruit.com/category/63_98 |
||
| 6 | |||
| 7 | These displays use SPI to communicate, 4 or 5 pins are required to |
||
| 8 | interface |
||
| 9 | |||
| 10 | Adafruit invests time and resources providing this open source code, |
||
| 11 | please support Adafruit and open-source hardware by purchasing |
||
| 12 | products from Adafruit! |
||
| 13 | |||
| 14 | Written by Limor Fried/Ladyada for Adafruit Industries. |
||
| 15 | BSD license, check license.txt for more information |
||
| 16 | All text above, and the splash screen below must be included in any redistribution |
||
| 17 | |||
| 18 | This code is taken from the ADAfruit library - it is used for playing with an OLED screen |
||
| 19 | |||
| 20 | *********************************************************************/ |
||
| 21 | #include <stdint.h> |
||
| 22 | #include <string.h> |
||
| 23 | #include "stm32f1xx_hal.h" |
||
| 24 | #include "SSD1306.h" |
||
| 25 | |||
| 26 | |||
| 27 | #define swap(x,y) { typeof(x)t = x; x=y; y=t; } |
||
| 28 | #define abs(x) ((x)>0?(x):-(x)) |
||
| 29 | |||
| 30 | static uint8_t rotation = 0; |
||
| 31 | const uint16_t WIDTH = SSD1306_LCDWIDTH; |
||
| 32 | const uint16_t HEIGHT = SSD1306_LCDHEIGHT; |
||
| 33 | |||
| 34 | extern SPI_HandleTypeDef hspi1; |
||
| 35 | |||
| 36 | |||
| 37 | |||
| 38 | |||
| 39 | // the memory buffer for the LCD |
||
| 40 | |||
| 41 | // pointer to the current display - affects buffer used and also chipselect |
||
| 42 | static int cd = 0; |
||
| 43 | |||
| 44 | uint8_t display_buffer[MAX_PHYS_DISPLAYS][SSD1306_LCDHEIGHT * SSD1306_LCDWIDTH / 8]; |
||
| 45 | |||
| 46 | inline uint8_t * display_address(void) |
||
| 47 | { |
||
| 48 | return (uint8_t *)(&display_buffer[cd]); |
||
| 49 | } |
||
| 50 | |||
| 51 | inline uint8_t getRotation(void) |
||
| 52 | { |
||
| 53 | return rotation; |
||
| 54 | } |
||
| 55 | |||
| 56 | inline int16_t width(void) |
||
| 57 | { |
||
| 58 | switch (rotation) |
||
| 59 | { |
||
| 60 | case 0: |
||
| 61 | return WIDTH; |
||
| 62 | break; |
||
| 63 | case 1: |
||
| 64 | return WIDTH; |
||
| 65 | break; |
||
| 66 | case 2: |
||
| 67 | return HEIGHT; |
||
| 68 | break; |
||
| 69 | case 3: |
||
| 70 | return -WIDTH; |
||
| 71 | break; |
||
| 72 | } |
||
| 73 | return 0; |
||
| 74 | } |
||
| 75 | |||
| 76 | inline int16_t height(void) |
||
| 77 | { |
||
| 78 | switch (rotation) |
||
| 79 | { |
||
| 80 | case 0: |
||
| 81 | return HEIGHT; |
||
| 82 | break; |
||
| 83 | case 1: |
||
| 84 | return HEIGHT; |
||
| 85 | break; |
||
| 86 | case 2: |
||
| 87 | return WIDTH; |
||
| 88 | break; |
||
| 89 | case 3: |
||
| 90 | return -HEIGHT; |
||
| 91 | break; |
||
| 92 | } |
||
| 93 | return 0; |
||
| 94 | } |
||
| 95 | |||
| 96 | |||
| 97 | inline void fastSPIwrite(uint8_t d) |
||
| 98 | { |
||
| 99 | uint8_t buffer[1]; |
||
| 100 | buffer[0] = d; |
||
| 101 | // todo chipselect based on 'cd' buffer choice |
||
| 102 | |||
| 103 | HAL_SPI_Transmit(&hspi1, buffer, 1, 2); |
||
| 104 | |||
| 105 | } |
||
| 106 | |||
| 107 | |||
| 108 | // the most basic function, set a single pixel |
||
| 109 | inline void drawPixel(int16_t x, int16_t y, uint16_t color) { |
||
| 110 | if ((x < 0) || (x >= width()) || (y < 0) || (y >= height())) |
||
| 111 | return; |
||
| 112 | |||
| 113 | // check rotation, move pixel around if necessary |
||
| 114 | switch (getRotation()) { |
||
| 115 | case 1: |
||
| 116 | swap(x, y); |
||
| 117 | x = WIDTH - x - 1; |
||
| 118 | break; |
||
| 119 | case 2: |
||
| 120 | x = WIDTH - x - 1; |
||
| 121 | y = HEIGHT - y - 1; |
||
| 122 | break; |
||
| 123 | case 3: |
||
| 124 | swap(x, y); |
||
| 125 | y = HEIGHT - y - 1; |
||
| 126 | break; |
||
| 127 | } |
||
| 128 | |||
| 129 | // x is which column |
||
| 130 | switch(color) |
||
| 131 | { |
||
| 132 | case BLACK: |
||
| 133 | display_buffer[cd][x+ (y/8)*SSD1306_LCDWIDTH] &= ~(1 << (y&7)); |
||
| 134 | break; |
||
| 135 | |||
| 136 | default: |
||
| 137 | case WHITE: |
||
| 138 | display_buffer[cd][x+ (y/8)*SSD1306_LCDWIDTH] |= (1 << (y&7)); |
||
| 139 | break; |
||
| 140 | |||
| 141 | case INVERT: |
||
| 142 | display_buffer[cd][x+ (y/8)*SSD1306_LCDWIDTH] ^= (1 << (y&7)); |
||
| 143 | break; |
||
| 144 | } |
||
| 145 | } |
||
| 146 | |||
| 147 | |||
| 148 | |||
| 149 | |||
| 150 | void ssd1306_begin(uint8_t vccstate, uint8_t i2caddr) { |
||
| 151 | |||
| 152 | |||
| 153 | HAL_GPIO_WritePin(SPI_RESET_GPIO_Port,SPI_RESET_Pin,GPIO_PIN_SET); |
||
| 154 | |||
| 155 | // VDD (3.3V) goes high at start, lets just chill for a ms |
||
| 156 | HAL_Delay(1); |
||
| 157 | // bring reset low |
||
| 158 | HAL_GPIO_WritePin(SPI_RESET_GPIO_Port,SPI_RESET_Pin,GPIO_PIN_RESET); |
||
| 159 | // wait 10ms |
||
| 160 | HAL_Delay(10); |
||
| 161 | // bring out of reset |
||
| 162 | HAL_GPIO_WritePin(SPI_RESET_GPIO_Port,SPI_RESET_Pin,GPIO_PIN_SET); |
||
| 163 | // turn on VCC (9V?) |
||
| 164 | |||
| 165 | for(cd = 0; cd<2 ; cd++) |
||
| 166 | { |
||
| 167 | #if defined SSD1306_128_32 |
||
| 168 | // Init sequence for 128x32 OLED module |
||
| 169 | ssd1306_command(SSD1306_DISPLAYOFF); // 0xAE |
||
| 170 | ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5 |
||
| 171 | ssd1306_command(0x80); // the suggested ratio 0x80 |
||
| 172 | ssd1306_command(SSD1306_SETMULTIPLEX); // 0xA8 |
||
| 173 | ssd1306_command(0x1F); |
||
| 174 | ssd1306_command(SSD1306_SETDISPLAYOFFSET); // 0xD3 |
||
| 175 | ssd1306_command(0x0); // no offset |
||
| 176 | ssd1306_command(SSD1306_SETSTARTLINE | 0x0); // line #0 |
||
| 177 | ssd1306_command(SSD1306_CHARGEPUMP); // 0x8D |
||
| 178 | if (vccstate == SSD1306_EXTERNALVCC) |
||
| 179 | { ssd1306_command(0x10); } |
||
| 180 | else |
||
| 181 | { ssd1306_command(0x14); } |
||
| 182 | ssd1306_command(SSD1306_MEMORYMODE); // 0x20 |
||
| 183 | ssd1306_command(0x00); // 0x0 act like ks0108 |
||
| 184 | ssd1306_command(SSD1306_SEGREMAP | 0x1); |
||
| 185 | ssd1306_command(SSD1306_COMSCANDEC); |
||
| 186 | ssd1306_command(SSD1306_SETCOMPINS); // 0xDA |
||
| 187 | ssd1306_command(0x02); |
||
| 188 | ssd1306_command(SSD1306_SETCONTRAST); // 0x81 |
||
| 189 | ssd1306_command(0x8F); |
||
| 190 | ssd1306_command(SSD1306_SETPRECHARGE); // 0xd9 |
||
| 191 | if (vccstate == SSD1306_EXTERNALVCC) |
||
| 192 | { ssd1306_command(0x22); } |
||
| 193 | else |
||
| 194 | { ssd1306_command(0xF1); } |
||
| 195 | ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB |
||
| 196 | ssd1306_command(0x40); |
||
| 197 | ssd1306_command(SSD1306_DISPLAYALLON_RESUME); // 0xA4 |
||
| 198 | ssd1306_command(SSD1306_NORMALDISPLAY); // 0xA6 |
||
| 199 | #endif |
||
| 200 | |||
| 201 | #if defined SSD1306_128_64 |
||
| 202 | // Init sequence for 128x64 OLED module |
||
| 203 | ssd1306_command(SSD1306_DISPLAYOFF); // 0xAE |
||
| 204 | ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5 |
||
| 205 | ssd1306_command(0x80); // the suggested ratio 0x80 |
||
| 206 | ssd1306_command(SSD1306_SETMULTIPLEX); // 0xA8 |
||
| 207 | ssd1306_command(0x3F); |
||
| 208 | ssd1306_command(SSD1306_SETDISPLAYOFFSET); // 0xD3 |
||
| 209 | ssd1306_command(0x0); // no offset |
||
| 210 | ssd1306_command(SSD1306_SETSTARTLINE | 0x0); // line #0 |
||
| 211 | ssd1306_command(SSD1306_CHARGEPUMP); // 0x8D |
||
| 212 | if (vccstate == SSD1306_EXTERNALVCC) |
||
| 213 | { ssd1306_command(0x10); } |
||
| 214 | else |
||
| 215 | { ssd1306_command(0x14); } |
||
| 216 | ssd1306_command(SSD1306_MEMORYMODE); // 0x20 |
||
| 217 | ssd1306_command(0x00); // 0x0 act like ks0108 |
||
| 218 | ssd1306_command(SSD1306_SEGREMAP | 0x1); |
||
| 219 | ssd1306_command(SSD1306_COMSCANDEC); |
||
| 220 | ssd1306_command(SSD1306_SETCOMPINS); // 0xDA |
||
| 221 | ssd1306_command(0x12); |
||
| 222 | ssd1306_command(SSD1306_SETCONTRAST); // 0x81 |
||
| 223 | if (vccstate == SSD1306_EXTERNALVCC) |
||
| 224 | { ssd1306_command(0x9F); } |
||
| 225 | else |
||
| 226 | { ssd1306_command(0xCF); } |
||
| 227 | ssd1306_command(SSD1306_SETPRECHARGE); // 0xd9 |
||
| 228 | if (vccstate == SSD1306_EXTERNALVCC) |
||
| 229 | { ssd1306_command(0x22); } |
||
| 230 | else |
||
| 231 | { ssd1306_command(0xF1); } |
||
| 232 | ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB |
||
| 233 | ssd1306_command(0x40); |
||
| 234 | ssd1306_command(SSD1306_DISPLAYALLON_RESUME); // 0xA4 |
||
| 235 | ssd1306_command(SSD1306_NORMALDISPLAY); // 0xA6 |
||
| 236 | #endif |
||
| 237 | |||
| 238 | ssd1306_command(SSD1306_DISPLAYON);//--turn on oled panel |
||
| 239 | } |
||
| 240 | } |
||
| 241 | |||
| 242 | |||
| 243 | void invertDisplay(uint8_t i) { |
||
| 244 | if (i) { |
||
| 245 | ssd1306_command(SSD1306_INVERTDISPLAY); |
||
| 246 | } else { |
||
| 247 | ssd1306_command(SSD1306_NORMALDISPLAY); |
||
| 248 | } |
||
| 249 | } |
||
| 250 | |||
| 251 | void ssd1306_command(uint8_t c) |
||
| 252 | { |
||
| 253 | HAL_GPIO_WritePin(SPI1CD_GPIO_Port,SPI1CD_Pin,GPIO_PIN_RESET); |
||
| 254 | |||
| 255 | fastSPIwrite(c); |
||
| 256 | |||
| 257 | } |
||
| 258 | |||
| 259 | // startscrollright |
||
| 260 | // Activate a right handed scroll for rows start through stop |
||
| 261 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
| 262 | // display.scrollright(0x00, 0x0F) |
||
| 263 | void startscrollright(uint8_t start, uint8_t stop){ |
||
| 264 | ssd1306_command(SSD1306_RIGHT_HORIZONTAL_SCROLL); |
||
| 265 | ssd1306_command(0X00); |
||
| 266 | ssd1306_command(start); |
||
| 267 | ssd1306_command(0X00); |
||
| 268 | ssd1306_command(stop); |
||
| 269 | ssd1306_command(0X00); |
||
| 270 | ssd1306_command(0XFF); |
||
| 271 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
| 272 | } |
||
| 273 | |||
| 274 | // startscrollleft |
||
| 275 | // Activate a right handed scroll for rows start through stop |
||
| 276 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
| 277 | // display.scrollright(0x00, 0x0F) |
||
| 278 | void startscrollleft(uint8_t start, uint8_t stop){ |
||
| 279 | ssd1306_command(SSD1306_LEFT_HORIZONTAL_SCROLL); |
||
| 280 | ssd1306_command(0X00); |
||
| 281 | ssd1306_command(start); |
||
| 282 | ssd1306_command(0X00); |
||
| 283 | ssd1306_command(stop); |
||
| 284 | ssd1306_command(0X00); |
||
| 285 | ssd1306_command(0XFF); |
||
| 286 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
| 287 | } |
||
| 288 | |||
| 289 | // startscrolldiagright |
||
| 290 | // Activate a diagonal scroll for rows start through stop |
||
| 291 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
| 292 | // display.scrollright(0x00, 0x0F) |
||
| 293 | void startscrolldiagright(uint8_t start, uint8_t stop){ |
||
| 294 | ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA); |
||
| 295 | ssd1306_command(0X00); |
||
| 296 | ssd1306_command(SSD1306_LCDHEIGHT); |
||
| 297 | ssd1306_command(SSD1306_VERTICAL_AND_RIGHT_HORIZONTAL_SCROLL); |
||
| 298 | ssd1306_command(0X00); |
||
| 299 | ssd1306_command(start); |
||
| 300 | ssd1306_command(0X00); |
||
| 301 | ssd1306_command(stop); |
||
| 302 | ssd1306_command(0X01); |
||
| 303 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
| 304 | } |
||
| 305 | |||
| 306 | // startscrolldiagleft |
||
| 307 | // Activate a diagonal scroll for rows start through stop |
||
| 308 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
| 309 | // display.scrollright(0x00, 0x0F) |
||
| 310 | void startscrolldiagleft(uint8_t start, uint8_t stop){ |
||
| 311 | ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA); |
||
| 312 | ssd1306_command(0X00); |
||
| 313 | ssd1306_command(SSD1306_LCDHEIGHT); |
||
| 314 | ssd1306_command(SSD1306_VERTICAL_AND_LEFT_HORIZONTAL_SCROLL); |
||
| 315 | ssd1306_command(0X00); |
||
| 316 | ssd1306_command(start); |
||
| 317 | ssd1306_command(0X00); |
||
| 318 | ssd1306_command(stop); |
||
| 319 | ssd1306_command(0X01); |
||
| 320 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
| 321 | } |
||
| 322 | |||
| 323 | void stopscroll(void){ |
||
| 324 | ssd1306_command(SSD1306_DEACTIVATE_SCROLL); |
||
| 325 | } |
||
| 326 | |||
| 327 | // Dim the display |
||
| 328 | // dim = true: display is dimmed |
||
| 329 | // dim = false: display is normal |
||
| 330 | void dim(boolean dim) { |
||
| 331 | uint8_t contrast; |
||
| 332 | |||
| 333 | if (dim) { |
||
| 334 | contrast = 0; // Dimmed display |
||
| 335 | } else { |
||
| 336 | contrast = 0xCF; |
||
| 337 | } |
||
| 338 | // the range of contrast to too small to be really useful |
||
| 339 | // it is useful to dim the display |
||
| 340 | ssd1306_command(SSD1306_SETCONTRAST); |
||
| 341 | ssd1306_command(contrast); |
||
| 342 | } |
||
| 343 | |||
| 344 | void display(void) { |
||
| 345 | ssd1306_command(SSD1306_COLUMNADDR); |
||
| 346 | ssd1306_command(0); // Column start address (0 = reset) |
||
| 347 | ssd1306_command(131); // Column end address (127 = reset) |
||
| 348 | |||
| 349 | ssd1306_command(SSD1306_PAGEADDR); |
||
| 350 | ssd1306_command(0); // Page start address (0 = reset) |
||
| 351 | ssd1306_command((SSD1306_LCDHEIGHT == 64) ? 7 : 3); // Page end address |
||
| 352 | |||
| 353 | int row; |
||
| 354 | int col=2; |
||
| 355 | for(row=0;row<SSD1306_LCDHEIGHT/8;row++) |
||
| 356 | { |
||
| 357 | // set the cursor to |
||
| 358 | ssd1306_command(0xB0 + row);//set page address |
||
| 359 | ssd1306_command(col & 0xf);//set lower column address |
||
| 360 | ssd1306_command(0x10 | (col >> 4));//set higher column address |
||
| 361 | |||
| 362 | |||
| 363 | HAL_GPIO_WritePin(SPI1CD_GPIO_Port,SPI1CD_Pin,GPIO_PIN_SET); |
||
| 364 | HAL_SPI_Transmit(&hspi1, (uint8_t *)(&display_buffer[cd])+row*SSD1306_LCDWIDTH, SSD1306_LCDWIDTH, 100); |
||
| 365 | } |
||
| 366 | |||
| 367 | } |
||
| 368 | |||
| 369 | |||
| 370 | // clear everything |
||
| 371 | void clearDisplay(void) { |
||
| 372 | memset(&display_buffer[cd], 0, (SSD1306_LCDWIDTH*SSD1306_LCDHEIGHT/8)); |
||
| 373 | } |
||
| 374 | |||
| 375 | |||
| 376 | void drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { |
||
| 377 | boolean bSwap = false; |
||
| 378 | switch(rotation) { |
||
| 379 | case 0: |
||
| 380 | // 0 degree rotation, do nothing |
||
| 381 | break; |
||
| 382 | case 1: |
||
| 383 | // 90 degree rotation, swap x & y for rotation, then invert x |
||
| 384 | bSwap = true; |
||
| 385 | swap(x, y); |
||
| 386 | x = WIDTH - x - 1; |
||
| 387 | break; |
||
| 388 | case 2: |
||
| 389 | // 180 degree rotation, invert x and y - then shift y around for height. |
||
| 390 | x = WIDTH - x - 1; |
||
| 391 | y = HEIGHT - y - 1; |
||
| 392 | x -= (w-1); |
||
| 393 | break; |
||
| 394 | case 3: |
||
| 395 | // 270 degree rotation, swap x & y for rotation, then invert y and adjust y for w (not to become h) |
||
| 396 | bSwap = true; |
||
| 397 | swap(x, y); |
||
| 398 | y = HEIGHT - y - 1; |
||
| 399 | y -= (w-1); |
||
| 400 | break; |
||
| 401 | } |
||
| 402 | |||
| 403 | if(bSwap) { |
||
| 404 | drawFastVLineInternal(x, y, w, color); |
||
| 405 | } else { |
||
| 406 | drawFastHLineInternal(x, y, w, color); |
||
| 407 | } |
||
| 408 | } |
||
| 409 | |||
| 410 | void drawFastHLineInternal(int16_t x, int16_t y, int16_t w, uint16_t color) { |
||
| 411 | // Do bounds/limit checks |
||
| 412 | if(y < 0 || y >= HEIGHT) { return; } |
||
| 413 | |||
| 414 | // make sure we don't try to draw below 0 |
||
| 415 | if(x < 0) { |
||
| 416 | w += x; |
||
| 417 | x = 0; |
||
| 418 | } |
||
| 419 | |||
| 420 | // make sure we don't go off the edge of the display |
||
| 421 | if( (x + w) > WIDTH) { |
||
| 422 | w = (HEIGHT- x); |
||
| 423 | } |
||
| 424 | |||
| 425 | // if our width is now negative, punt |
||
| 426 | if(w <= 0) { return; } |
||
| 427 | |||
| 428 | // set up the pointer for movement through the buffer |
||
| 429 | register uint8_t *pBuf = display_address(); |
||
| 430 | // adjust the buffer pointer for the current row |
||
| 431 | pBuf += ((y/8) * SSD1306_LCDWIDTH); |
||
| 432 | // and offset x columns in |
||
| 433 | pBuf += x; |
||
| 434 | |||
| 435 | register uint8_t mask = 1 << (y&7); |
||
| 436 | |||
| 437 | if(color == WHITE) { |
||
| 438 | while(w--) { *pBuf++ |= mask; } |
||
| 439 | } else { |
||
| 440 | mask = ~mask; |
||
| 441 | while(w--) { *pBuf++ &= mask; } |
||
| 442 | } |
||
| 443 | } |
||
| 444 | |||
| 445 | void drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { |
||
| 446 | boolean bSwap = false; |
||
| 447 | switch(rotation) { |
||
| 448 | case 0: |
||
| 449 | break; |
||
| 450 | case 1: |
||
| 451 | // 90 degree rotation, swap x & y for rotation, then invert x and adjust x for h (now to become w) |
||
| 452 | bSwap = true; |
||
| 453 | swap(x, y); |
||
| 454 | x = WIDTH - x - 1; |
||
| 455 | x -= (h-1); |
||
| 456 | break; |
||
| 457 | case 2: |
||
| 458 | // 180 degree rotation, invert x and y - then shift y around for height. |
||
| 459 | x = WIDTH - x - 1; |
||
| 460 | y = HEIGHT - y - 1; |
||
| 461 | y -= (h-1); |
||
| 462 | break; |
||
| 463 | case 3: |
||
| 464 | // 270 degree rotation, swap x & y for rotation, then invert y |
||
| 465 | bSwap = true; |
||
| 466 | swap(x, y); |
||
| 467 | y = HEIGHT - y - 1; |
||
| 468 | break; |
||
| 469 | } |
||
| 470 | |||
| 471 | if(bSwap) { |
||
| 472 | drawFastHLineInternal(x, y, h, color); |
||
| 473 | } else { |
||
| 474 | drawFastVLineInternal(x, y, h, color); |
||
| 475 | } |
||
| 476 | } |
||
| 477 | |||
| 478 | |||
| 479 | void drawFastVLineInternal(int16_t x, int16_t __y, int16_t __h, uint16_t color) { |
||
| 480 | |||
| 481 | // do nothing if we're off the left or right side of the screen |
||
| 482 | if(x < 0 || x >= WIDTH) { return; } |
||
| 483 | |||
| 484 | // make sure we don't try to draw below 0 |
||
| 485 | if(__y < 0) { |
||
| 486 | // __y is negative, this will subtract enough from __h to account for __y being 0 |
||
| 487 | __h += __y; |
||
| 488 | __y = 0; |
||
| 489 | |||
| 490 | } |
||
| 491 | |||
| 492 | // make sure we don't go past the height of the display |
||
| 493 | if( (__y + __h) > HEIGHT) { |
||
| 494 | __h = (HEIGHT - __y); |
||
| 495 | } |
||
| 496 | |||
| 497 | // if our height is now negative, punt |
||
| 498 | if(__h <= 0) { |
||
| 499 | return; |
||
| 500 | } |
||
| 501 | |||
| 502 | // this display doesn't need ints for coordinates, use local byte registers for faster juggling |
||
| 503 | register uint8_t y = __y; |
||
| 504 | register uint8_t h = __h; |
||
| 505 | |||
| 506 | |||
| 507 | // set up the pointer for fast movement through the buffer |
||
| 508 | register uint8_t *pBuf = display_address(); |
||
| 509 | // adjust the buffer pointer for the current row |
||
| 510 | pBuf += ((y/8) * SSD1306_LCDWIDTH); |
||
| 511 | // and offset x columns in |
||
| 512 | pBuf += x; |
||
| 513 | |||
| 514 | // do the first partial byte, if necessary - this requires some masking |
||
| 515 | register uint8_t mod = (y&7); |
||
| 516 | if(mod) { |
||
| 517 | // mask off the high n bits we want to set |
||
| 518 | mod = 8-mod; |
||
| 519 | |||
| 520 | // note - lookup table results in a nearly 10% performance improvement in fill* functions |
||
| 521 | // register uint8_t mask = ~(0xFF >> (mod)); |
||
| 522 | static uint8_t premask[8] = {0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE }; |
||
| 523 | register uint8_t mask = premask[mod]; |
||
| 524 | |||
| 525 | // adjust the mask if we're not going to reach the end of this byte |
||
| 526 | if( h < mod) { |
||
| 527 | mask &= (0XFF >> (mod-h)); |
||
| 528 | } |
||
| 529 | |||
| 530 | if(color == WHITE) { |
||
| 531 | *pBuf |= mask; |
||
| 532 | } else { |
||
| 533 | *pBuf &= ~mask; |
||
| 534 | } |
||
| 535 | |||
| 536 | // fast exit if we're done here! |
||
| 537 | if(h<mod) { return; } |
||
| 538 | |||
| 539 | h -= mod; |
||
| 540 | |||
| 541 | pBuf += SSD1306_LCDWIDTH; |
||
| 542 | } |
||
| 543 | |||
| 544 | |||
| 545 | // write solid bytes while we can - effectively doing 8 rows at a time |
||
| 546 | if(h >= 8) { |
||
| 547 | // store a local value to work with |
||
| 548 | register uint8_t val = (color == WHITE) ? 255 : 0; |
||
| 549 | |||
| 550 | do { |
||
| 551 | // write our value in |
||
| 552 | *pBuf = val; |
||
| 553 | |||
| 554 | // adjust the buffer forward 8 rows worth of data |
||
| 555 | pBuf += SSD1306_LCDWIDTH; |
||
| 556 | |||
| 557 | // adjust h & y (there's got to be a faster way for me to do this, but this should still help a fair bit for now) |
||
| 558 | h -= 8; |
||
| 559 | } while(h >= 8); |
||
| 560 | } |
||
| 561 | |||
| 562 | // now do the final partial byte, if necessary |
||
| 563 | if(h) { |
||
| 564 | mod = h & 7; |
||
| 565 | // this time we want to mask the low bits of the byte, vs the high bits we did above |
||
| 566 | // register uint8_t mask = (1 << mod) - 1; |
||
| 567 | // note - lookup table results in a nearly 10% performance improvement in fill* functions |
||
| 568 | static uint8_t postmask[8] = {0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F }; |
||
| 569 | register uint8_t mask = postmask[mod]; |
||
| 570 | if(color == WHITE) { |
||
| 571 | *pBuf |= mask; |
||
| 572 | } else { |
||
| 573 | *pBuf &= ~mask; |
||
| 574 | } |
||
| 575 | } |
||
| 576 | } |
||
| 577 | |||
| 578 | |||
| 579 | |||
| 580 | |||
| 581 | /* using Bresenham draw algorithm */ |
||
| 582 | void drawLine(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color) |
||
| 583 | { |
||
| 584 | int16_t x, |
||
| 585 | y, |
||
| 586 | dx, //deltas |
||
| 587 | dy, |
||
| 588 | dx2, //scaled deltas |
||
| 589 | dy2, |
||
| 590 | ix, //increase rate on the x axis |
||
| 591 | iy, //increase rate on the y axis |
||
| 592 | err; //the error term |
||
| 593 | uint16_t i; //looping variable |
||
| 594 | |||
| 595 | |||
| 596 | // identify the first pixel |
||
| 597 | x=x1; |
||
| 598 | y=y1; |
||
| 599 | |||
| 600 | // difference between starting and ending points |
||
| 601 | dx = x2 - x1; |
||
| 602 | dy = y2 - y1; |
||
| 603 | |||
| 604 | // calculate direction of the vector and store in ix and iy |
||
| 605 | if (dx >= 0) |
||
| 606 | ix = 1; |
||
| 607 | |||
| 608 | if (dx < 0) |
||
| 609 | { |
||
| 610 | ix = -1; |
||
| 611 | dx = abs(dx); |
||
| 612 | } |
||
| 613 | |||
| 614 | if (dy >= 0) |
||
| 615 | iy = 1; |
||
| 616 | |||
| 617 | if (dy < 0) |
||
| 618 | { |
||
| 619 | iy = -1; |
||
| 620 | dy = abs(dy); |
||
| 621 | } |
||
| 622 | |||
| 623 | // scale deltas and store in dx2 and dy2 |
||
| 624 | dx2 = dx * 2; |
||
| 625 | dy2 = dy * 2; |
||
| 626 | |||
| 627 | // all variables are set and it's time to enter the main loop. |
||
| 628 | |||
| 629 | if (dx > dy) // dx is the major axis |
||
| 630 | { |
||
| 631 | // initialize the error term |
||
| 632 | err = dy2 - dx; |
||
| 633 | |||
| 634 | for (i = 0; i <= dx; i++) |
||
| 635 | { |
||
| 636 | drawPixel(x, y, color); |
||
| 637 | if (err >= 0) |
||
| 638 | { |
||
| 639 | err -= dx2; |
||
| 640 | y += iy; |
||
| 641 | } |
||
| 642 | err += dy2; |
||
| 643 | x += ix; |
||
| 644 | } |
||
| 645 | } |
||
| 646 | |||
| 647 | else // dy is the major axis |
||
| 648 | { |
||
| 649 | // initialize the error term |
||
| 650 | err = dx2 - dy; |
||
| 651 | |||
| 652 | for (i = 0; i <= dy; i++) |
||
| 653 | { |
||
| 654 | drawPixel(x, y, color); |
||
| 655 | if (err >= 0) |
||
| 656 | { |
||
| 657 | err -= dy2; |
||
| 658 | x += ix; |
||
| 659 | } |
||
| 660 | err += dx2; |
||
| 661 | y += iy; |
||
| 662 | } |
||
| 663 | } |
||
| 664 | } |
||
| 665 | |||
| 666 | |||
| 667 | void select_display(int i) |
||
| 668 | { |
||
| 669 | if(i<MAX_PHYS_DISPLAYS) |
||
| 670 | { |
||
| 671 | cd = i; |
||
| 672 | } |
||
| 673 | } |