Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_rfft_f32.c |
||
9 | * |
||
10 | * Description: RFFT & RIFFT Floating point process function |
||
11 | * |
||
12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
13 | * |
||
14 | * Redistribution and use in source and binary forms, with or without |
||
15 | * modification, are permitted provided that the following conditions |
||
16 | * are met: |
||
17 | * - Redistributions of source code must retain the above copyright |
||
18 | * notice, this list of conditions and the following disclaimer. |
||
19 | * - Redistributions in binary form must reproduce the above copyright |
||
20 | * notice, this list of conditions and the following disclaimer in |
||
21 | * the documentation and/or other materials provided with the |
||
22 | * distribution. |
||
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
24 | * may be used to endorse or promote products derived from this |
||
25 | * software without specific prior written permission. |
||
26 | * |
||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
38 | * POSSIBILITY OF SUCH DAMAGE. |
||
39 | * -------------------------------------------------------------------- */ |
||
40 | |||
41 | #include "arm_math.h" |
||
42 | |||
43 | void stage_rfft_f32( |
||
44 | arm_rfft_fast_instance_f32 * S, |
||
45 | float32_t * p, float32_t * pOut) |
||
46 | { |
||
47 | uint32_t k; /* Loop Counter */ |
||
48 | float32_t twR, twI; /* RFFT Twiddle coefficients */ |
||
49 | float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ |
||
50 | float32_t *pA = p; /* increasing pointer */ |
||
51 | float32_t *pB = p; /* decreasing pointer */ |
||
52 | float32_t xAR, xAI, xBR, xBI; /* temporary variables */ |
||
53 | float32_t t1a, t1b; /* temporary variables */ |
||
54 | float32_t p0, p1, p2, p3; /* temporary variables */ |
||
55 | |||
56 | |||
57 | k = (S->Sint).fftLen - 1; |
||
58 | |||
59 | /* Pack first and last sample of the frequency domain together */ |
||
60 | |||
61 | xBR = pB[0]; |
||
62 | xBI = pB[1]; |
||
63 | xAR = pA[0]; |
||
64 | xAI = pA[1]; |
||
65 | |||
66 | twR = *pCoeff++ ; |
||
67 | twI = *pCoeff++ ; |
||
68 | |||
69 | // U1 = XA(1) + XB(1); % It is real |
||
70 | t1a = xBR + xAR ; |
||
71 | |||
72 | // U2 = XB(1) - XA(1); % It is imaginary |
||
73 | t1b = xBI + xAI ; |
||
74 | |||
75 | // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); |
||
76 | // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); |
||
77 | *pOut++ = 0.5f * ( t1a + t1b ); |
||
78 | *pOut++ = 0.5f * ( t1a - t1b ); |
||
79 | |||
80 | // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); |
||
81 | pB = p + 2*k; |
||
82 | pA += 2; |
||
83 | |||
84 | do |
||
85 | { |
||
86 | /* |
||
87 | function X = my_split_rfft(X, ifftFlag) |
||
88 | % X is a series of real numbers |
||
89 | L = length(X); |
||
90 | XC = X(1:2:end) +i*X(2:2:end); |
||
91 | XA = fft(XC); |
||
92 | XB = conj(XA([1 end:-1:2])); |
||
93 | TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; |
||
94 | for l = 2:L/2 |
||
95 | XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); |
||
96 | end |
||
97 | XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); |
||
98 | X = XA; |
||
99 | */ |
||
100 | |||
101 | xBI = pB[1]; |
||
102 | xBR = pB[0]; |
||
103 | xAR = pA[0]; |
||
104 | xAI = pA[1]; |
||
105 | |||
106 | twR = *pCoeff++; |
||
107 | twI = *pCoeff++; |
||
108 | |||
109 | t1a = xBR - xAR ; |
||
110 | t1b = xBI + xAI ; |
||
111 | |||
112 | // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); |
||
113 | // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); |
||
114 | p0 = twR * t1a; |
||
115 | p1 = twI * t1a; |
||
116 | p2 = twR * t1b; |
||
117 | p3 = twI * t1b; |
||
118 | |||
119 | *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR |
||
120 | *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI |
||
121 | |||
122 | pA += 2; |
||
123 | pB -= 2; |
||
124 | k--; |
||
125 | } while(k > 0u); |
||
126 | } |
||
127 | |||
128 | /* Prepares data for inverse cfft */ |
||
129 | void merge_rfft_f32( |
||
130 | arm_rfft_fast_instance_f32 * S, |
||
131 | float32_t * p, float32_t * pOut) |
||
132 | { |
||
133 | uint32_t k; /* Loop Counter */ |
||
134 | float32_t twR, twI; /* RFFT Twiddle coefficients */ |
||
135 | float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ |
||
136 | float32_t *pA = p; /* increasing pointer */ |
||
137 | float32_t *pB = p; /* decreasing pointer */ |
||
138 | float32_t xAR, xAI, xBR, xBI; /* temporary variables */ |
||
139 | float32_t t1a, t1b, r, s, t, u; /* temporary variables */ |
||
140 | |||
141 | k = (S->Sint).fftLen - 1; |
||
142 | |||
143 | xAR = pA[0]; |
||
144 | xAI = pA[1]; |
||
145 | |||
146 | pCoeff += 2 ; |
||
147 | |||
148 | *pOut++ = 0.5f * ( xAR + xAI ); |
||
149 | *pOut++ = 0.5f * ( xAR - xAI ); |
||
150 | |||
151 | pB = p + 2*k ; |
||
152 | pA += 2 ; |
||
153 | |||
154 | while(k > 0u) |
||
155 | { |
||
156 | /* G is half of the frequency complex spectrum */ |
||
157 | //for k = 2:N |
||
158 | // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); |
||
159 | xBI = pB[1] ; |
||
160 | xBR = pB[0] ; |
||
161 | xAR = pA[0]; |
||
162 | xAI = pA[1]; |
||
163 | |||
164 | twR = *pCoeff++; |
||
165 | twI = *pCoeff++; |
||
166 | |||
167 | t1a = xAR - xBR ; |
||
168 | t1b = xAI + xBI ; |
||
169 | |||
170 | r = twR * t1a; |
||
171 | s = twI * t1b; |
||
172 | t = twI * t1a; |
||
173 | u = twR * t1b; |
||
174 | |||
175 | // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); |
||
176 | // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); |
||
177 | *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR |
||
178 | *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI |
||
179 | |||
180 | pA += 2; |
||
181 | pB -= 2; |
||
182 | k--; |
||
183 | } |
||
184 | |||
185 | } |
||
186 | |||
187 | /** |
||
188 | * @ingroup groupTransforms |
||
189 | */ |
||
190 | |||
191 | /** |
||
192 | * @defgroup Fast Real FFT Functions |
||
193 | * |
||
194 | * \par |
||
195 | * The CMSIS DSP library includes specialized algorithms for computing the |
||
196 | * FFT of real data sequences. The FFT is defined over complex data but |
||
197 | * in many applications the input is real. Real FFT algorithms take advantage |
||
198 | * of the symmetry properties of the FFT and have a speed advantage over complex |
||
199 | * algorithms of the same length. |
||
200 | * \par |
||
201 | * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage. |
||
202 | * \par |
||
203 | * The real length N forward FFT of a sequence is computed using the steps shown below. |
||
204 | * \par |
||
205 | * \image html RFFT.gif "Real Fast Fourier Transform" |
||
206 | * \par |
||
207 | * The real sequence is initially treated as if it were complex to perform a CFFT. |
||
208 | * Later, a processing stage reshapes the data to obtain half of the frequency spectrum |
||
209 | * in complex format. Except the first complex number that contains the two real numbers |
||
210 | * X[0] and X[N/2] all the data is complex. In other words, the first complex sample |
||
211 | * contains two real values packed. |
||
212 | * \par |
||
213 | * The input for the inverse RFFT should keep the same format as the output of the |
||
214 | * forward RFFT. A first processing stage pre-process the data to later perform an |
||
215 | * inverse CFFT. |
||
216 | * \par |
||
217 | * \image html RIFFT.gif "Real Inverse Fast Fourier Transform" |
||
218 | * \par |
||
219 | * The algorithms for floating-point, Q15, and Q31 data are slightly different |
||
220 | * and we describe each algorithm in turn. |
||
221 | * \par Floating-point |
||
222 | * The main functions are <code>arm_rfft_fast_f32()</code> |
||
223 | * and <code>arm_rfft_fast_init_f32()</code>. The older functions |
||
224 | * <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been |
||
225 | * deprecated but are still documented. |
||
226 | * \par |
||
227 | * The FFT of a real N-point sequence has even symmetry in the frequency |
||
228 | * domain. The second half of the data equals the conjugate of the first half |
||
229 | * flipped in frequency: |
||
230 | * <pre> |
||
231 | *X[0] - real data |
||
232 | *X[1] - complex data |
||
233 | *X[2] - complex data |
||
234 | *... |
||
235 | *X[fftLen/2-1] - complex data |
||
236 | *X[fftLen/2] - real data |
||
237 | *X[fftLen/2+1] - conjugate of X[fftLen/2-1] |
||
238 | *X[fftLen/2+2] - conjugate of X[fftLen/2-2] |
||
239 | *... |
||
240 | *X[fftLen-1] - conjugate of X[1] |
||
241 | * </pre> |
||
242 | * Looking at the data, we see that we can uniquely represent the FFT using only |
||
243 | * <pre> |
||
244 | *N/2+1 samples: |
||
245 | *X[0] - real data |
||
246 | *X[1] - complex data |
||
247 | *X[2] - complex data |
||
248 | *... |
||
249 | *X[fftLen/2-1] - complex data |
||
250 | *X[fftLen/2] - real data |
||
251 | * </pre> |
||
252 | * Looking more closely we see that the first and last samples are real valued. |
||
253 | * They can be packed together and we can thus represent the FFT of an N-point |
||
254 | * real sequence by N/2 complex values: |
||
255 | * <pre> |
||
256 | *X[0],X[N/2] - packed real data: X[0] + jX[N/2] |
||
257 | *X[1] - complex data |
||
258 | *X[2] - complex data |
||
259 | *... |
||
260 | *X[fftLen/2-1] - complex data |
||
261 | * </pre> |
||
262 | * The real FFT functions pack the frequency domain data in this fashion. The |
||
263 | * forward transform outputs the data in this form and the inverse transform |
||
264 | * expects input data in this form. The function always performs the needed |
||
265 | * bitreversal so that the input and output data is always in normal order. The |
||
266 | * functions support lengths of [32, 64, 128, ..., 4096] samples. |
||
267 | * \par |
||
268 | * The forward and inverse real FFT functions apply the standard FFT scaling; no |
||
269 | * scaling on the forward transform and 1/fftLen scaling on the inverse |
||
270 | * transform. |
||
271 | * \par Q15 and Q31 |
||
272 | * The real algorithms are defined in a similar manner and utilize N/2 complex |
||
273 | * transforms behind the scenes. |
||
274 | * \par |
||
275 | * The complex transforms used internally include scaling to prevent fixed-point |
||
276 | * overflows. The overall scaling equals 1/(fftLen/2). |
||
277 | * \par |
||
278 | * A separate instance structure must be defined for each transform used but |
||
279 | * twiddle factor and bit reversal tables can be reused. |
||
280 | * \par |
||
281 | * There is also an associated initialization function for each data type. |
||
282 | * The initialization function performs the following operations: |
||
283 | * - Sets the values of the internal structure fields. |
||
284 | * - Initializes twiddle factor table and bit reversal table pointers. |
||
285 | * - Initializes the internal complex FFT data structure. |
||
286 | * \par |
||
287 | * Use of the initialization function is optional. |
||
288 | * However, if the initialization function is used, then the instance structure |
||
289 | * cannot be placed into a const data section. To place an instance structure |
||
290 | * into a const data section, the instance structure should be manually |
||
291 | * initialized as follows: |
||
292 | * <pre> |
||
293 | *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
||
294 | *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
||
295 | * </pre> |
||
296 | * where <code>fftLenReal</code> is the length of the real transform; |
||
297 | * <code>fftLenBy2</code> length of the internal complex transform. |
||
298 | * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform. |
||
299 | * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order |
||
300 | * output (=1). |
||
301 | * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table. |
||
302 | * The value is based on the FFT length; |
||
303 | * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients; |
||
304 | * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients; |
||
305 | * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure |
||
306 | * must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding |
||
307 | * static initialization of the complex FFT instance structure. |
||
308 | */ |
||
309 | |||
310 | /** |
||
311 | * @addtogroup RealFFT |
||
312 | * @{ |
||
313 | */ |
||
314 | |||
315 | /** |
||
316 | * @brief Processing function for the floating-point real FFT. |
||
317 | * @param[in] *S points to an arm_rfft_fast_instance_f32 structure. |
||
318 | * @param[in] *p points to the input buffer. |
||
319 | * @param[in] *pOut points to the output buffer. |
||
320 | * @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1 |
||
321 | * @return none. |
||
322 | */ |
||
323 | |||
324 | void arm_rfft_fast_f32( |
||
325 | arm_rfft_fast_instance_f32 * S, |
||
326 | float32_t * p, float32_t * pOut, |
||
327 | uint8_t ifftFlag) |
||
328 | { |
||
329 | arm_cfft_instance_f32 * Sint = &(S->Sint); |
||
330 | Sint->fftLen = S->fftLenRFFT / 2; |
||
331 | |||
332 | /* Calculation of Real FFT */ |
||
333 | if(ifftFlag) |
||
334 | { |
||
335 | /* Real FFT compression */ |
||
336 | merge_rfft_f32(S, p, pOut); |
||
337 | |||
338 | /* Complex radix-4 IFFT process */ |
||
339 | arm_cfft_f32( Sint, pOut, ifftFlag, 1); |
||
340 | } |
||
341 | else |
||
342 | { |
||
343 | /* Calculation of RFFT of input */ |
||
344 | arm_cfft_f32( Sint, p, ifftFlag, 1); |
||
345 | |||
346 | /* Real FFT extraction */ |
||
347 | stage_rfft_f32(S, p, pOut); |
||
348 | } |
||
349 | } |
||
350 | |||
351 | /** |
||
352 | * @} end of RealFFT group |
||
353 | */ |