Go to most recent revision | Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* ---------------------------------------------------------------------- |
| 2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
| 3 | * |
||
| 4 | * $Date: 19. March 2015 |
||
| 5 | * $Revision: V.1.4.5 |
||
| 6 | * |
||
| 7 | * Project: CMSIS DSP Library |
||
| 8 | * Title: arm_dct4_q15.c |
||
| 9 | * |
||
| 10 | * Description: Processing function of DCT4 & IDCT4 Q15. |
||
| 11 | * |
||
| 12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
| 13 | * |
||
| 14 | * Redistribution and use in source and binary forms, with or without |
||
| 15 | * modification, are permitted provided that the following conditions |
||
| 16 | * are met: |
||
| 17 | * - Redistributions of source code must retain the above copyright |
||
| 18 | * notice, this list of conditions and the following disclaimer. |
||
| 19 | * - Redistributions in binary form must reproduce the above copyright |
||
| 20 | * notice, this list of conditions and the following disclaimer in |
||
| 21 | * the documentation and/or other materials provided with the |
||
| 22 | * distribution. |
||
| 23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
| 24 | * may be used to endorse or promote products derived from this |
||
| 25 | * software without specific prior written permission. |
||
| 26 | * |
||
| 27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
| 28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
| 29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
| 30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
| 31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
| 33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
| 34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
| 35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
| 36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
| 37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
| 38 | * POSSIBILITY OF SUCH DAMAGE. |
||
| 39 | * -------------------------------------------------------------------- */ |
||
| 40 | |||
| 41 | #include "arm_math.h" |
||
| 42 | |||
| 43 | /** |
||
| 44 | * @addtogroup DCT4_IDCT4 |
||
| 45 | * @{ |
||
| 46 | */ |
||
| 47 | |||
| 48 | /** |
||
| 49 | * @brief Processing function for the Q15 DCT4/IDCT4. |
||
| 50 | * @param[in] *S points to an instance of the Q15 DCT4 structure. |
||
| 51 | * @param[in] *pState points to state buffer. |
||
| 52 | * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. |
||
| 53 | * @return none. |
||
| 54 | * |
||
| 55 | * \par Input an output formats: |
||
| 56 | * Internally inputs are downscaled in the RFFT process function to avoid overflows. |
||
| 57 | * Number of bits downscaled, depends on the size of the transform. |
||
| 58 | * The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below: |
||
| 59 | * |
||
| 60 | * \image html dct4FormatsQ15Table.gif |
||
| 61 | */ |
||
| 62 | |||
| 63 | void arm_dct4_q15( |
||
| 64 | const arm_dct4_instance_q15 * S, |
||
| 65 | q15_t * pState, |
||
| 66 | q15_t * pInlineBuffer) |
||
| 67 | { |
||
| 68 | uint32_t i; /* Loop counter */ |
||
| 69 | q15_t *weights = S->pTwiddle; /* Pointer to the Weights table */ |
||
| 70 | q15_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ |
||
| 71 | q15_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ |
||
| 72 | q15_t in; /* Temporary variable */ |
||
| 73 | |||
| 74 | |||
| 75 | /* DCT4 computation involves DCT2 (which is calculated using RFFT) |
||
| 76 | * along with some pre-processing and post-processing. |
||
| 77 | * Computational procedure is explained as follows: |
||
| 78 | * (a) Pre-processing involves multiplying input with cos factor, |
||
| 79 | * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) |
||
| 80 | * where, |
||
| 81 | * r(n) -- output of preprocessing |
||
| 82 | * u(n) -- input to preprocessing(actual Source buffer) |
||
| 83 | * (b) Calculation of DCT2 using FFT is divided into three steps: |
||
| 84 | * Step1: Re-ordering of even and odd elements of input. |
||
| 85 | * Step2: Calculating FFT of the re-ordered input. |
||
| 86 | * Step3: Taking the real part of the product of FFT output and weights. |
||
| 87 | * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: |
||
| 88 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
||
| 89 | * where, |
||
| 90 | * Y4 -- DCT4 output, Y2 -- DCT2 output |
||
| 91 | * (d) Multiplying the output with the normalizing factor sqrt(2/N). |
||
| 92 | */ |
||
| 93 | |||
| 94 | /*-------- Pre-processing ------------*/ |
||
| 95 | /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ |
||
| 96 | arm_mult_q15(pInlineBuffer, cosFact, pInlineBuffer, S->N); |
||
| 97 | arm_shift_q15(pInlineBuffer, 1, pInlineBuffer, S->N); |
||
| 98 | |||
| 99 | /* ---------------------------------------------------------------- |
||
| 100 | * Step1: Re-ordering of even and odd elements as |
||
| 101 | * pState[i] = pInlineBuffer[2*i] and |
||
| 102 | * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 |
||
| 103 | ---------------------------------------------------------------------*/ |
||
| 104 | |||
| 105 | /* pS1 initialized to pState */ |
||
| 106 | pS1 = pState; |
||
| 107 | |||
| 108 | /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ |
||
| 109 | pS2 = pState + (S->N - 1u); |
||
| 110 | |||
| 111 | /* pbuff initialized to input buffer */ |
||
| 112 | pbuff = pInlineBuffer; |
||
| 113 | |||
| 114 | |||
| 115 | #ifndef ARM_MATH_CM0_FAMILY |
||
| 116 | |||
| 117 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
| 118 | |||
| 119 | /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ |
||
| 120 | i = (uint32_t) S->Nby2 >> 2u; |
||
| 121 | |||
| 122 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
||
| 123 | ** a second loop below computes the remaining 1 to 3 samples. */ |
||
| 124 | do |
||
| 125 | { |
||
| 126 | /* Re-ordering of even and odd elements */ |
||
| 127 | /* pState[i] = pInlineBuffer[2*i] */ |
||
| 128 | *pS1++ = *pbuff++; |
||
| 129 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
||
| 130 | *pS2-- = *pbuff++; |
||
| 131 | |||
| 132 | *pS1++ = *pbuff++; |
||
| 133 | *pS2-- = *pbuff++; |
||
| 134 | |||
| 135 | *pS1++ = *pbuff++; |
||
| 136 | *pS2-- = *pbuff++; |
||
| 137 | |||
| 138 | *pS1++ = *pbuff++; |
||
| 139 | *pS2-- = *pbuff++; |
||
| 140 | |||
| 141 | /* Decrement the loop counter */ |
||
| 142 | i--; |
||
| 143 | } while(i > 0u); |
||
| 144 | |||
| 145 | /* pbuff initialized to input buffer */ |
||
| 146 | pbuff = pInlineBuffer; |
||
| 147 | |||
| 148 | /* pS1 initialized to pState */ |
||
| 149 | pS1 = pState; |
||
| 150 | |||
| 151 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
||
| 152 | i = (uint32_t) S->N >> 2u; |
||
| 153 | |||
| 154 | /* Processing with loop unrolling 4 times as N is always multiple of 4. |
||
| 155 | * Compute 4 outputs at a time */ |
||
| 156 | do |
||
| 157 | { |
||
| 158 | /* Writing the re-ordered output back to inplace input buffer */ |
||
| 159 | *pbuff++ = *pS1++; |
||
| 160 | *pbuff++ = *pS1++; |
||
| 161 | *pbuff++ = *pS1++; |
||
| 162 | *pbuff++ = *pS1++; |
||
| 163 | |||
| 164 | /* Decrement the loop counter */ |
||
| 165 | i--; |
||
| 166 | } while(i > 0u); |
||
| 167 | |||
| 168 | |||
| 169 | /* --------------------------------------------------------- |
||
| 170 | * Step2: Calculate RFFT for N-point input |
||
| 171 | * ---------------------------------------------------------- */ |
||
| 172 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
||
| 173 | arm_rfft_q15(S->pRfft, pInlineBuffer, pState); |
||
| 174 | |||
| 175 | /*---------------------------------------------------------------------- |
||
| 176 | * Step3: Multiply the FFT output with the weights. |
||
| 177 | *----------------------------------------------------------------------*/ |
||
| 178 | arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); |
||
| 179 | |||
| 180 | /* The output of complex multiplication is in 3.13 format. |
||
| 181 | * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ |
||
| 182 | arm_shift_q15(pState, 2, pState, S->N * 2); |
||
| 183 | |||
| 184 | /* ----------- Post-processing ---------- */ |
||
| 185 | /* DCT-IV can be obtained from DCT-II by the equation, |
||
| 186 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
||
| 187 | * Hence, Y4(0) = Y2(0)/2 */ |
||
| 188 | /* Getting only real part from the output and Converting to DCT-IV */ |
||
| 189 | |||
| 190 | /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ |
||
| 191 | i = ((uint32_t) S->N - 1u) >> 2u; |
||
| 192 | |||
| 193 | /* pbuff initialized to input buffer. */ |
||
| 194 | pbuff = pInlineBuffer; |
||
| 195 | |||
| 196 | /* pS1 initialized to pState */ |
||
| 197 | pS1 = pState; |
||
| 198 | |||
| 199 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
||
| 200 | in = *pS1++ >> 1u; |
||
| 201 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
||
| 202 | *pbuff++ = in; |
||
| 203 | |||
| 204 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
||
| 205 | pS1++; |
||
| 206 | |||
| 207 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
||
| 208 | ** a second loop below computes the remaining 1 to 3 samples. */ |
||
| 209 | do |
||
| 210 | { |
||
| 211 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
||
| 212 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
||
| 213 | in = *pS1++ - in; |
||
| 214 | *pbuff++ = in; |
||
| 215 | /* points to the next real value */ |
||
| 216 | pS1++; |
||
| 217 | |||
| 218 | in = *pS1++ - in; |
||
| 219 | *pbuff++ = in; |
||
| 220 | pS1++; |
||
| 221 | |||
| 222 | in = *pS1++ - in; |
||
| 223 | *pbuff++ = in; |
||
| 224 | pS1++; |
||
| 225 | |||
| 226 | in = *pS1++ - in; |
||
| 227 | *pbuff++ = in; |
||
| 228 | pS1++; |
||
| 229 | |||
| 230 | /* Decrement the loop counter */ |
||
| 231 | i--; |
||
| 232 | } while(i > 0u); |
||
| 233 | |||
| 234 | /* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
||
| 235 | ** No loop unrolling is used. */ |
||
| 236 | i = ((uint32_t) S->N - 1u) % 0x4u; |
||
| 237 | |||
| 238 | while(i > 0u) |
||
| 239 | { |
||
| 240 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
||
| 241 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
||
| 242 | in = *pS1++ - in; |
||
| 243 | *pbuff++ = in; |
||
| 244 | /* points to the next real value */ |
||
| 245 | pS1++; |
||
| 246 | |||
| 247 | /* Decrement the loop counter */ |
||
| 248 | i--; |
||
| 249 | } |
||
| 250 | |||
| 251 | |||
| 252 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
||
| 253 | |||
| 254 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
||
| 255 | i = (uint32_t) S->N >> 2u; |
||
| 256 | |||
| 257 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
||
| 258 | pbuff = pInlineBuffer; |
||
| 259 | |||
| 260 | /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ |
||
| 261 | do |
||
| 262 | { |
||
| 263 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
||
| 264 | in = *pbuff; |
||
| 265 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
| 266 | |||
| 267 | in = *pbuff; |
||
| 268 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
| 269 | |||
| 270 | in = *pbuff; |
||
| 271 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
| 272 | |||
| 273 | in = *pbuff; |
||
| 274 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
| 275 | |||
| 276 | /* Decrement the loop counter */ |
||
| 277 | i--; |
||
| 278 | } while(i > 0u); |
||
| 279 | |||
| 280 | |||
| 281 | #else |
||
| 282 | |||
| 283 | /* Run the below code for Cortex-M0 */ |
||
| 284 | |||
| 285 | /* Initializing the loop counter to N/2 */ |
||
| 286 | i = (uint32_t) S->Nby2; |
||
| 287 | |||
| 288 | do |
||
| 289 | { |
||
| 290 | /* Re-ordering of even and odd elements */ |
||
| 291 | /* pState[i] = pInlineBuffer[2*i] */ |
||
| 292 | *pS1++ = *pbuff++; |
||
| 293 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
||
| 294 | *pS2-- = *pbuff++; |
||
| 295 | |||
| 296 | /* Decrement the loop counter */ |
||
| 297 | i--; |
||
| 298 | } while(i > 0u); |
||
| 299 | |||
| 300 | /* pbuff initialized to input buffer */ |
||
| 301 | pbuff = pInlineBuffer; |
||
| 302 | |||
| 303 | /* pS1 initialized to pState */ |
||
| 304 | pS1 = pState; |
||
| 305 | |||
| 306 | /* Initializing the loop counter */ |
||
| 307 | i = (uint32_t) S->N; |
||
| 308 | |||
| 309 | do |
||
| 310 | { |
||
| 311 | /* Writing the re-ordered output back to inplace input buffer */ |
||
| 312 | *pbuff++ = *pS1++; |
||
| 313 | |||
| 314 | /* Decrement the loop counter */ |
||
| 315 | i--; |
||
| 316 | } while(i > 0u); |
||
| 317 | |||
| 318 | |||
| 319 | /* --------------------------------------------------------- |
||
| 320 | * Step2: Calculate RFFT for N-point input |
||
| 321 | * ---------------------------------------------------------- */ |
||
| 322 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
||
| 323 | arm_rfft_q15(S->pRfft, pInlineBuffer, pState); |
||
| 324 | |||
| 325 | /*---------------------------------------------------------------------- |
||
| 326 | * Step3: Multiply the FFT output with the weights. |
||
| 327 | *----------------------------------------------------------------------*/ |
||
| 328 | arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); |
||
| 329 | |||
| 330 | /* The output of complex multiplication is in 3.13 format. |
||
| 331 | * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ |
||
| 332 | arm_shift_q15(pState, 2, pState, S->N * 2); |
||
| 333 | |||
| 334 | /* ----------- Post-processing ---------- */ |
||
| 335 | /* DCT-IV can be obtained from DCT-II by the equation, |
||
| 336 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
||
| 337 | * Hence, Y4(0) = Y2(0)/2 */ |
||
| 338 | /* Getting only real part from the output and Converting to DCT-IV */ |
||
| 339 | |||
| 340 | /* Initializing the loop counter */ |
||
| 341 | i = ((uint32_t) S->N - 1u); |
||
| 342 | |||
| 343 | /* pbuff initialized to input buffer. */ |
||
| 344 | pbuff = pInlineBuffer; |
||
| 345 | |||
| 346 | /* pS1 initialized to pState */ |
||
| 347 | pS1 = pState; |
||
| 348 | |||
| 349 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
||
| 350 | in = *pS1++ >> 1u; |
||
| 351 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
||
| 352 | *pbuff++ = in; |
||
| 353 | |||
| 354 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
||
| 355 | pS1++; |
||
| 356 | |||
| 357 | do |
||
| 358 | { |
||
| 359 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
||
| 360 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
||
| 361 | in = *pS1++ - in; |
||
| 362 | *pbuff++ = in; |
||
| 363 | /* points to the next real value */ |
||
| 364 | pS1++; |
||
| 365 | |||
| 366 | /* Decrement the loop counter */ |
||
| 367 | i--; |
||
| 368 | } while(i > 0u); |
||
| 369 | |||
| 370 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
||
| 371 | |||
| 372 | /* Initializing the loop counter */ |
||
| 373 | i = (uint32_t) S->N; |
||
| 374 | |||
| 375 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
||
| 376 | pbuff = pInlineBuffer; |
||
| 377 | |||
| 378 | do |
||
| 379 | { |
||
| 380 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
||
| 381 | in = *pbuff; |
||
| 382 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
||
| 383 | |||
| 384 | /* Decrement the loop counter */ |
||
| 385 | i--; |
||
| 386 | } while(i > 0u); |
||
| 387 | |||
| 388 | #endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
||
| 389 | |||
| 390 | } |
||
| 391 | |||
| 392 | /** |
||
| 393 | * @} end of DCT4_IDCT4 group |
||
| 394 | */ |