Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_cfft_radix4_q31.c |
||
9 | * |
||
10 | * Description: This file has function definition of Radix-4 FFT & IFFT function and |
||
11 | * In-place bit reversal using bit reversal table |
||
12 | * |
||
13 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
14 | * |
||
15 | * Redistribution and use in source and binary forms, with or without |
||
16 | * modification, are permitted provided that the following conditions |
||
17 | * are met: |
||
18 | * - Redistributions of source code must retain the above copyright |
||
19 | * notice, this list of conditions and the following disclaimer. |
||
20 | * - Redistributions in binary form must reproduce the above copyright |
||
21 | * notice, this list of conditions and the following disclaimer in |
||
22 | * the documentation and/or other materials provided with the |
||
23 | * distribution. |
||
24 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
25 | * may be used to endorse or promote products derived from this |
||
26 | * software without specific prior written permission. |
||
27 | * |
||
28 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
29 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
30 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
31 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
32 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
33 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
34 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
35 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
36 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
37 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
38 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
39 | * POSSIBILITY OF SUCH DAMAGE. |
||
40 | * -------------------------------------------------------------------- */ |
||
41 | |||
42 | #include "arm_math.h" |
||
43 | |||
44 | void arm_radix4_butterfly_inverse_q31( |
||
45 | q31_t * pSrc, |
||
46 | uint32_t fftLen, |
||
47 | q31_t * pCoef, |
||
48 | uint32_t twidCoefModifier); |
||
49 | |||
50 | void arm_radix4_butterfly_q31( |
||
51 | q31_t * pSrc, |
||
52 | uint32_t fftLen, |
||
53 | q31_t * pCoef, |
||
54 | uint32_t twidCoefModifier); |
||
55 | |||
56 | void arm_bitreversal_q31( |
||
57 | q31_t * pSrc, |
||
58 | uint32_t fftLen, |
||
59 | uint16_t bitRevFactor, |
||
60 | uint16_t * pBitRevTab); |
||
61 | |||
62 | /** |
||
63 | * @ingroup groupTransforms |
||
64 | */ |
||
65 | |||
66 | /** |
||
67 | * @addtogroup ComplexFFT |
||
68 | * @{ |
||
69 | */ |
||
70 | |||
71 | /** |
||
72 | * @details |
||
73 | * @brief Processing function for the Q31 CFFT/CIFFT. |
||
74 | * @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q31 and will be removed |
||
75 | * @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure. |
||
76 | * @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. |
||
77 | * @return none. |
||
78 | * |
||
79 | * \par Input and output formats: |
||
80 | * \par |
||
81 | * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. |
||
82 | * Hence the output format is different for different FFT sizes. |
||
83 | * The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT: |
||
84 | * \par |
||
85 | * \image html CFFTQ31.gif "Input and Output Formats for Q31 CFFT" |
||
86 | * \image html CIFFTQ31.gif "Input and Output Formats for Q31 CIFFT" |
||
87 | * |
||
88 | */ |
||
89 | |||
90 | void arm_cfft_radix4_q31( |
||
91 | const arm_cfft_radix4_instance_q31 * S, |
||
92 | q31_t * pSrc) |
||
93 | { |
||
94 | if(S->ifftFlag == 1u) |
||
95 | { |
||
96 | /* Complex IFFT radix-4 */ |
||
97 | arm_radix4_butterfly_inverse_q31(pSrc, S->fftLen, S->pTwiddle, |
||
98 | S->twidCoefModifier); |
||
99 | } |
||
100 | else |
||
101 | { |
||
102 | /* Complex FFT radix-4 */ |
||
103 | arm_radix4_butterfly_q31(pSrc, S->fftLen, S->pTwiddle, |
||
104 | S->twidCoefModifier); |
||
105 | } |
||
106 | |||
107 | |||
108 | if(S->bitReverseFlag == 1u) |
||
109 | { |
||
110 | /* Bit Reversal */ |
||
111 | arm_bitreversal_q31(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); |
||
112 | } |
||
113 | |||
114 | } |
||
115 | |||
116 | /** |
||
117 | * @} end of ComplexFFT group |
||
118 | */ |
||
119 | |||
120 | /* |
||
121 | * Radix-4 FFT algorithm used is : |
||
122 | * |
||
123 | * Input real and imaginary data: |
||
124 | * x(n) = xa + j * ya |
||
125 | * x(n+N/4 ) = xb + j * yb |
||
126 | * x(n+N/2 ) = xc + j * yc |
||
127 | * x(n+3N 4) = xd + j * yd |
||
128 | * |
||
129 | * |
||
130 | * Output real and imaginary data: |
||
131 | * x(4r) = xa'+ j * ya' |
||
132 | * x(4r+1) = xb'+ j * yb' |
||
133 | * x(4r+2) = xc'+ j * yc' |
||
134 | * x(4r+3) = xd'+ j * yd' |
||
135 | * |
||
136 | * |
||
137 | * Twiddle factors for radix-4 FFT: |
||
138 | * Wn = co1 + j * (- si1) |
||
139 | * W2n = co2 + j * (- si2) |
||
140 | * W3n = co3 + j * (- si3) |
||
141 | * |
||
142 | * Butterfly implementation: |
||
143 | * xa' = xa + xb + xc + xd |
||
144 | * ya' = ya + yb + yc + yd |
||
145 | * xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) |
||
146 | * yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) |
||
147 | * xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) |
||
148 | * yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) |
||
149 | * xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) |
||
150 | * yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) |
||
151 | * |
||
152 | */ |
||
153 | |||
154 | /** |
||
155 | * @brief Core function for the Q31 CFFT butterfly process. |
||
156 | * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. |
||
157 | * @param[in] fftLen length of the FFT. |
||
158 | * @param[in] *pCoef points to twiddle coefficient buffer. |
||
159 | * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
160 | * @return none. |
||
161 | */ |
||
162 | |||
163 | void arm_radix4_butterfly_q31( |
||
164 | q31_t * pSrc, |
||
165 | uint32_t fftLen, |
||
166 | q31_t * pCoef, |
||
167 | uint32_t twidCoefModifier) |
||
168 | { |
||
169 | #if defined(ARM_MATH_CM7) |
||
170 | uint32_t n1, n2, ia1, ia2, ia3, i0, i1, i2, i3, j, k; |
||
171 | q31_t t1, t2, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3; |
||
172 | |||
173 | q31_t xa, xb, xc, xd; |
||
174 | q31_t ya, yb, yc, yd; |
||
175 | q31_t xa_out, xb_out, xc_out, xd_out; |
||
176 | q31_t ya_out, yb_out, yc_out, yd_out; |
||
177 | |||
178 | q31_t *ptr1; |
||
179 | q63_t xaya, xbyb, xcyc, xdyd; |
||
180 | /* Total process is divided into three stages */ |
||
181 | |||
182 | /* process first stage, middle stages, & last stage */ |
||
183 | |||
184 | |||
185 | /* start of first stage process */ |
||
186 | |||
187 | /* Initializations for the first stage */ |
||
188 | n2 = fftLen; |
||
189 | n1 = n2; |
||
190 | /* n2 = fftLen/4 */ |
||
191 | n2 >>= 2u; |
||
192 | i0 = 0u; |
||
193 | ia1 = 0u; |
||
194 | |||
195 | j = n2; |
||
196 | |||
197 | /* Calculation of first stage */ |
||
198 | do |
||
199 | { |
||
200 | /* index calculation for the input as, */ |
||
201 | /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2u], pSrc[i0 + 3fftLen/4] */ |
||
202 | i1 = i0 + n2; |
||
203 | i2 = i1 + n2; |
||
204 | i3 = i2 + n2; |
||
205 | |||
206 | /* input is in 1.31(q31) format and provide 4 guard bits for the input */ |
||
207 | |||
208 | /* Butterfly implementation */ |
||
209 | /* xa + xc */ |
||
210 | r1 = (pSrc[(2u * i0)] >> 4u) + (pSrc[(2u * i2)] >> 4u); |
||
211 | /* xa - xc */ |
||
212 | r2 = (pSrc[2u * i0] >> 4u) - (pSrc[2u * i2] >> 4u); |
||
213 | |||
214 | /* xb + xd */ |
||
215 | t1 = (pSrc[2u * i1] >> 4u) + (pSrc[2u * i3] >> 4u); |
||
216 | |||
217 | /* ya + yc */ |
||
218 | s1 = (pSrc[(2u * i0) + 1u] >> 4u) + (pSrc[(2u * i2) + 1u] >> 4u); |
||
219 | /* ya - yc */ |
||
220 | s2 = (pSrc[(2u * i0) + 1u] >> 4u) - (pSrc[(2u * i2) + 1u] >> 4u); |
||
221 | |||
222 | /* xa' = xa + xb + xc + xd */ |
||
223 | pSrc[2u * i0] = (r1 + t1); |
||
224 | /* (xa + xc) - (xb + xd) */ |
||
225 | r1 = r1 - t1; |
||
226 | /* yb + yd */ |
||
227 | t2 = (pSrc[(2u * i1) + 1u] >> 4u) + (pSrc[(2u * i3) + 1u] >> 4u); |
||
228 | |||
229 | /* ya' = ya + yb + yc + yd */ |
||
230 | pSrc[(2u * i0) + 1u] = (s1 + t2); |
||
231 | |||
232 | /* (ya + yc) - (yb + yd) */ |
||
233 | s1 = s1 - t2; |
||
234 | |||
235 | /* yb - yd */ |
||
236 | t1 = (pSrc[(2u * i1) + 1u] >> 4u) - (pSrc[(2u * i3) + 1u] >> 4u); |
||
237 | /* xb - xd */ |
||
238 | t2 = (pSrc[2u * i1] >> 4u) - (pSrc[2u * i3] >> 4u); |
||
239 | |||
240 | /* index calculation for the coefficients */ |
||
241 | ia2 = 2u * ia1; |
||
242 | co2 = pCoef[ia2 * 2u]; |
||
243 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
244 | |||
245 | /* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */ |
||
246 | pSrc[2u * i1] = (((int32_t) (((q63_t) r1 * co2) >> 32)) + |
||
247 | ((int32_t) (((q63_t) s1 * si2) >> 32))) << 1u; |
||
248 | |||
249 | /* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */ |
||
250 | pSrc[(2u * i1) + 1u] = (((int32_t) (((q63_t) s1 * co2) >> 32)) - |
||
251 | ((int32_t) (((q63_t) r1 * si2) >> 32))) << 1u; |
||
252 | |||
253 | /* (xa - xc) + (yb - yd) */ |
||
254 | r1 = r2 + t1; |
||
255 | /* (xa - xc) - (yb - yd) */ |
||
256 | r2 = r2 - t1; |
||
257 | |||
258 | /* (ya - yc) - (xb - xd) */ |
||
259 | s1 = s2 - t2; |
||
260 | /* (ya - yc) + (xb - xd) */ |
||
261 | s2 = s2 + t2; |
||
262 | |||
263 | co1 = pCoef[ia1 * 2u]; |
||
264 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
265 | |||
266 | /* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */ |
||
267 | pSrc[2u * i2] = (((int32_t) (((q63_t) r1 * co1) >> 32)) + |
||
268 | ((int32_t) (((q63_t) s1 * si1) >> 32))) << 1u; |
||
269 | |||
270 | /* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */ |
||
271 | pSrc[(2u * i2) + 1u] = (((int32_t) (((q63_t) s1 * co1) >> 32)) - |
||
272 | ((int32_t) (((q63_t) r1 * si1) >> 32))) << 1u; |
||
273 | |||
274 | /* index calculation for the coefficients */ |
||
275 | ia3 = 3u * ia1; |
||
276 | co3 = pCoef[ia3 * 2u]; |
||
277 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
278 | |||
279 | /* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */ |
||
280 | pSrc[2u * i3] = (((int32_t) (((q63_t) r2 * co3) >> 32)) + |
||
281 | ((int32_t) (((q63_t) s2 * si3) >> 32))) << 1u; |
||
282 | |||
283 | /* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */ |
||
284 | pSrc[(2u * i3) + 1u] = (((int32_t) (((q63_t) s2 * co3) >> 32)) - |
||
285 | ((int32_t) (((q63_t) r2 * si3) >> 32))) << 1u; |
||
286 | |||
287 | /* Twiddle coefficients index modifier */ |
||
288 | ia1 = ia1 + twidCoefModifier; |
||
289 | |||
290 | /* Updating input index */ |
||
291 | i0 = i0 + 1u; |
||
292 | |||
293 | } while(--j); |
||
294 | |||
295 | /* end of first stage process */ |
||
296 | |||
297 | /* data is in 5.27(q27) format */ |
||
298 | |||
299 | |||
300 | /* start of Middle stages process */ |
||
301 | |||
302 | |||
303 | /* each stage in middle stages provides two down scaling of the input */ |
||
304 | |||
305 | twidCoefModifier <<= 2u; |
||
306 | |||
307 | |||
308 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
309 | { |
||
310 | /* Initializations for the first stage */ |
||
311 | n1 = n2; |
||
312 | n2 >>= 2u; |
||
313 | ia1 = 0u; |
||
314 | |||
315 | /* Calculation of first stage */ |
||
316 | for (j = 0u; j <= (n2 - 1u); j++) |
||
317 | { |
||
318 | /* index calculation for the coefficients */ |
||
319 | ia2 = ia1 + ia1; |
||
320 | ia3 = ia2 + ia1; |
||
321 | co1 = pCoef[ia1 * 2u]; |
||
322 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
323 | co2 = pCoef[ia2 * 2u]; |
||
324 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
325 | co3 = pCoef[ia3 * 2u]; |
||
326 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
327 | /* Twiddle coefficients index modifier */ |
||
328 | ia1 = ia1 + twidCoefModifier; |
||
329 | |||
330 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
331 | { |
||
332 | /* index calculation for the input as, */ |
||
333 | /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2u], pSrc[i0 + 3fftLen/4] */ |
||
334 | i1 = i0 + n2; |
||
335 | i2 = i1 + n2; |
||
336 | i3 = i2 + n2; |
||
337 | |||
338 | /* Butterfly implementation */ |
||
339 | /* xa + xc */ |
||
340 | r1 = pSrc[2u * i0] + pSrc[2u * i2]; |
||
341 | /* xa - xc */ |
||
342 | r2 = pSrc[2u * i0] - pSrc[2u * i2]; |
||
343 | |||
344 | /* ya + yc */ |
||
345 | s1 = pSrc[(2u * i0) + 1u] + pSrc[(2u * i2) + 1u]; |
||
346 | /* ya - yc */ |
||
347 | s2 = pSrc[(2u * i0) + 1u] - pSrc[(2u * i2) + 1u]; |
||
348 | |||
349 | /* xb + xd */ |
||
350 | t1 = pSrc[2u * i1] + pSrc[2u * i3]; |
||
351 | |||
352 | /* xa' = xa + xb + xc + xd */ |
||
353 | pSrc[2u * i0] = (r1 + t1) >> 2u; |
||
354 | /* xa + xc -(xb + xd) */ |
||
355 | r1 = r1 - t1; |
||
356 | |||
357 | /* yb + yd */ |
||
358 | t2 = pSrc[(2u * i1) + 1u] + pSrc[(2u * i3) + 1u]; |
||
359 | /* ya' = ya + yb + yc + yd */ |
||
360 | pSrc[(2u * i0) + 1u] = (s1 + t2) >> 2u; |
||
361 | |||
362 | /* (ya + yc) - (yb + yd) */ |
||
363 | s1 = s1 - t2; |
||
364 | |||
365 | /* (yb - yd) */ |
||
366 | t1 = pSrc[(2u * i1) + 1u] - pSrc[(2u * i3) + 1u]; |
||
367 | /* (xb - xd) */ |
||
368 | t2 = pSrc[2u * i1] - pSrc[2u * i3]; |
||
369 | |||
370 | /* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */ |
||
371 | pSrc[2u * i1] = (((int32_t) (((q63_t) r1 * co2) >> 32)) + |
||
372 | ((int32_t) (((q63_t) s1 * si2) >> 32))) >> 1u; |
||
373 | |||
374 | /* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */ |
||
375 | pSrc[(2u * i1) + 1u] = (((int32_t) (((q63_t) s1 * co2) >> 32)) - |
||
376 | ((int32_t) (((q63_t) r1 * si2) >> 32))) >> 1u; |
||
377 | |||
378 | /* (xa - xc) + (yb - yd) */ |
||
379 | r1 = r2 + t1; |
||
380 | /* (xa - xc) - (yb - yd) */ |
||
381 | r2 = r2 - t1; |
||
382 | |||
383 | /* (ya - yc) - (xb - xd) */ |
||
384 | s1 = s2 - t2; |
||
385 | /* (ya - yc) + (xb - xd) */ |
||
386 | s2 = s2 + t2; |
||
387 | |||
388 | /* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */ |
||
389 | pSrc[2u * i2] = (((int32_t) (((q63_t) r1 * co1) >> 32)) + |
||
390 | ((int32_t) (((q63_t) s1 * si1) >> 32))) >> 1u; |
||
391 | |||
392 | /* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */ |
||
393 | pSrc[(2u * i2) + 1u] = (((int32_t) (((q63_t) s1 * co1) >> 32)) - |
||
394 | ((int32_t) (((q63_t) r1 * si1) >> 32))) >> 1u; |
||
395 | |||
396 | /* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */ |
||
397 | pSrc[2u * i3] = (((int32_t) (((q63_t) r2 * co3) >> 32)) + |
||
398 | ((int32_t) (((q63_t) s2 * si3) >> 32))) >> 1u; |
||
399 | |||
400 | /* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */ |
||
401 | pSrc[(2u * i3) + 1u] = (((int32_t) (((q63_t) s2 * co3) >> 32)) - |
||
402 | ((int32_t) (((q63_t) r2 * si3) >> 32))) >> 1u; |
||
403 | } |
||
404 | } |
||
405 | twidCoefModifier <<= 2u; |
||
406 | } |
||
407 | #else |
||
408 | uint32_t n1, n2, ia1, ia2, ia3, i0, j, k; |
||
409 | q31_t t1, t2, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3; |
||
410 | |||
411 | q31_t xa, xb, xc, xd; |
||
412 | q31_t ya, yb, yc, yd; |
||
413 | q31_t xa_out, xb_out, xc_out, xd_out; |
||
414 | q31_t ya_out, yb_out, yc_out, yd_out; |
||
415 | |||
416 | q31_t *ptr1; |
||
417 | q31_t *pSi0; |
||
418 | q31_t *pSi1; |
||
419 | q31_t *pSi2; |
||
420 | q31_t *pSi3; |
||
421 | q63_t xaya, xbyb, xcyc, xdyd; |
||
422 | /* Total process is divided into three stages */ |
||
423 | |||
424 | /* process first stage, middle stages, & last stage */ |
||
425 | |||
426 | |||
427 | /* start of first stage process */ |
||
428 | |||
429 | /* Initializations for the first stage */ |
||
430 | n2 = fftLen; |
||
431 | n1 = n2; |
||
432 | /* n2 = fftLen/4 */ |
||
433 | n2 >>= 2u; |
||
434 | |||
435 | ia1 = 0u; |
||
436 | |||
437 | j = n2; |
||
438 | |||
439 | pSi0 = pSrc; |
||
440 | pSi1 = pSi0 + 2 * n2; |
||
441 | pSi2 = pSi1 + 2 * n2; |
||
442 | pSi3 = pSi2 + 2 * n2; |
||
443 | |||
444 | /* Calculation of first stage */ |
||
445 | do |
||
446 | { |
||
447 | /* input is in 1.31(q31) format and provide 4 guard bits for the input */ |
||
448 | |||
449 | /* Butterfly implementation */ |
||
450 | /* xa + xc */ |
||
451 | r1 = (pSi0[0] >> 4u) + (pSi2[0] >> 4u); |
||
452 | /* xa - xc */ |
||
453 | r2 = (pSi0[0] >> 4u) - (pSi2[0] >> 4u); |
||
454 | |||
455 | /* xb + xd */ |
||
456 | t1 = (pSi1[0] >> 4u) + (pSi3[0] >> 4u); |
||
457 | |||
458 | /* ya + yc */ |
||
459 | s1 = (pSi0[1] >> 4u) + (pSi2[1] >> 4u); |
||
460 | /* ya - yc */ |
||
461 | s2 = (pSi0[1] >> 4u) - (pSi2[1] >> 4u); |
||
462 | |||
463 | /* xa' = xa + xb + xc + xd */ |
||
464 | *pSi0++ = (r1 + t1); |
||
465 | /* (xa + xc) - (xb + xd) */ |
||
466 | r1 = r1 - t1; |
||
467 | /* yb + yd */ |
||
468 | t2 = (pSi1[1] >> 4u) + (pSi3[1] >> 4u); |
||
469 | |||
470 | /* ya' = ya + yb + yc + yd */ |
||
471 | *pSi0++ = (s1 + t2); |
||
472 | |||
473 | /* (ya + yc) - (yb + yd) */ |
||
474 | s1 = s1 - t2; |
||
475 | |||
476 | /* yb - yd */ |
||
477 | t1 = (pSi1[1] >> 4u) - (pSi3[1] >> 4u); |
||
478 | /* xb - xd */ |
||
479 | t2 = (pSi1[0] >> 4u) - (pSi3[0] >> 4u); |
||
480 | |||
481 | /* index calculation for the coefficients */ |
||
482 | ia2 = 2u * ia1; |
||
483 | co2 = pCoef[ia2 * 2u]; |
||
484 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
485 | |||
486 | /* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */ |
||
487 | *pSi1++ = (((int32_t) (((q63_t) r1 * co2) >> 32)) + |
||
488 | ((int32_t) (((q63_t) s1 * si2) >> 32))) << 1u; |
||
489 | |||
490 | /* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */ |
||
491 | *pSi1++ = (((int32_t) (((q63_t) s1 * co2) >> 32)) - |
||
492 | ((int32_t) (((q63_t) r1 * si2) >> 32))) << 1u; |
||
493 | |||
494 | /* (xa - xc) + (yb - yd) */ |
||
495 | r1 = r2 + t1; |
||
496 | /* (xa - xc) - (yb - yd) */ |
||
497 | r2 = r2 - t1; |
||
498 | |||
499 | /* (ya - yc) - (xb - xd) */ |
||
500 | s1 = s2 - t2; |
||
501 | /* (ya - yc) + (xb - xd) */ |
||
502 | s2 = s2 + t2; |
||
503 | |||
504 | co1 = pCoef[ia1 * 2u]; |
||
505 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
506 | |||
507 | /* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */ |
||
508 | *pSi2++ = (((int32_t) (((q63_t) r1 * co1) >> 32)) + |
||
509 | ((int32_t) (((q63_t) s1 * si1) >> 32))) << 1u; |
||
510 | |||
511 | /* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */ |
||
512 | *pSi2++ = (((int32_t) (((q63_t) s1 * co1) >> 32)) - |
||
513 | ((int32_t) (((q63_t) r1 * si1) >> 32))) << 1u; |
||
514 | |||
515 | /* index calculation for the coefficients */ |
||
516 | ia3 = 3u * ia1; |
||
517 | co3 = pCoef[ia3 * 2u]; |
||
518 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
519 | |||
520 | /* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */ |
||
521 | *pSi3++ = (((int32_t) (((q63_t) r2 * co3) >> 32)) + |
||
522 | ((int32_t) (((q63_t) s2 * si3) >> 32))) << 1u; |
||
523 | |||
524 | /* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */ |
||
525 | *pSi3++ = (((int32_t) (((q63_t) s2 * co3) >> 32)) - |
||
526 | ((int32_t) (((q63_t) r2 * si3) >> 32))) << 1u; |
||
527 | |||
528 | /* Twiddle coefficients index modifier */ |
||
529 | ia1 = ia1 + twidCoefModifier; |
||
530 | |||
531 | } while(--j); |
||
532 | |||
533 | /* end of first stage process */ |
||
534 | |||
535 | /* data is in 5.27(q27) format */ |
||
536 | |||
537 | |||
538 | /* start of Middle stages process */ |
||
539 | |||
540 | |||
541 | /* each stage in middle stages provides two down scaling of the input */ |
||
542 | |||
543 | twidCoefModifier <<= 2u; |
||
544 | |||
545 | |||
546 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
547 | { |
||
548 | /* Initializations for the first stage */ |
||
549 | n1 = n2; |
||
550 | n2 >>= 2u; |
||
551 | ia1 = 0u; |
||
552 | |||
553 | /* Calculation of first stage */ |
||
554 | for (j = 0u; j <= (n2 - 1u); j++) |
||
555 | { |
||
556 | /* index calculation for the coefficients */ |
||
557 | ia2 = ia1 + ia1; |
||
558 | ia3 = ia2 + ia1; |
||
559 | co1 = pCoef[ia1 * 2u]; |
||
560 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
561 | co2 = pCoef[ia2 * 2u]; |
||
562 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
563 | co3 = pCoef[ia3 * 2u]; |
||
564 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
565 | /* Twiddle coefficients index modifier */ |
||
566 | ia1 = ia1 + twidCoefModifier; |
||
567 | |||
568 | pSi0 = pSrc + 2 * j; |
||
569 | pSi1 = pSi0 + 2 * n2; |
||
570 | pSi2 = pSi1 + 2 * n2; |
||
571 | pSi3 = pSi2 + 2 * n2; |
||
572 | |||
573 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
574 | { |
||
575 | /* Butterfly implementation */ |
||
576 | /* xa + xc */ |
||
577 | r1 = pSi0[0] + pSi2[0]; |
||
578 | |||
579 | /* xa - xc */ |
||
580 | r2 = pSi0[0] - pSi2[0]; |
||
581 | |||
582 | |||
583 | /* ya + yc */ |
||
584 | s1 = pSi0[1] + pSi2[1]; |
||
585 | |||
586 | /* ya - yc */ |
||
587 | s2 = pSi0[1] - pSi2[1]; |
||
588 | |||
589 | |||
590 | /* xb + xd */ |
||
591 | t1 = pSi1[0] + pSi3[0]; |
||
592 | |||
593 | |||
594 | /* xa' = xa + xb + xc + xd */ |
||
595 | pSi0[0] = (r1 + t1) >> 2u; |
||
596 | /* xa + xc -(xb + xd) */ |
||
597 | r1 = r1 - t1; |
||
598 | |||
599 | /* yb + yd */ |
||
600 | t2 = pSi1[1] + pSi3[1]; |
||
601 | |||
602 | /* ya' = ya + yb + yc + yd */ |
||
603 | pSi0[1] = (s1 + t2) >> 2u; |
||
604 | pSi0 += 2 * n1; |
||
605 | |||
606 | /* (ya + yc) - (yb + yd) */ |
||
607 | s1 = s1 - t2; |
||
608 | |||
609 | /* (yb - yd) */ |
||
610 | t1 = pSi1[1] - pSi3[1]; |
||
611 | |||
612 | /* (xb - xd) */ |
||
613 | t2 = pSi1[0] - pSi3[0]; |
||
614 | |||
615 | |||
616 | /* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */ |
||
617 | pSi1[0] = (((int32_t) (((q63_t) r1 * co2) >> 32)) + |
||
618 | ((int32_t) (((q63_t) s1 * si2) >> 32))) >> 1u; |
||
619 | |||
620 | /* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */ |
||
621 | pSi1[1] = (((int32_t) (((q63_t) s1 * co2) >> 32)) - |
||
622 | ((int32_t) (((q63_t) r1 * si2) >> 32))) >> 1u; |
||
623 | pSi1 += 2 * n1; |
||
624 | |||
625 | /* (xa - xc) + (yb - yd) */ |
||
626 | r1 = r2 + t1; |
||
627 | /* (xa - xc) - (yb - yd) */ |
||
628 | r2 = r2 - t1; |
||
629 | |||
630 | /* (ya - yc) - (xb - xd) */ |
||
631 | s1 = s2 - t2; |
||
632 | /* (ya - yc) + (xb - xd) */ |
||
633 | s2 = s2 + t2; |
||
634 | |||
635 | /* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */ |
||
636 | pSi2[0] = (((int32_t) (((q63_t) r1 * co1) >> 32)) + |
||
637 | ((int32_t) (((q63_t) s1 * si1) >> 32))) >> 1u; |
||
638 | |||
639 | /* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */ |
||
640 | pSi2[1] = (((int32_t) (((q63_t) s1 * co1) >> 32)) - |
||
641 | ((int32_t) (((q63_t) r1 * si1) >> 32))) >> 1u; |
||
642 | pSi2 += 2 * n1; |
||
643 | |||
644 | /* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */ |
||
645 | pSi3[0] = (((int32_t) (((q63_t) r2 * co3) >> 32)) + |
||
646 | ((int32_t) (((q63_t) s2 * si3) >> 32))) >> 1u; |
||
647 | |||
648 | /* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */ |
||
649 | pSi3[1] = (((int32_t) (((q63_t) s2 * co3) >> 32)) - |
||
650 | ((int32_t) (((q63_t) r2 * si3) >> 32))) >> 1u; |
||
651 | pSi3 += 2 * n1; |
||
652 | } |
||
653 | } |
||
654 | twidCoefModifier <<= 2u; |
||
655 | } |
||
656 | #endif |
||
657 | |||
658 | /* End of Middle stages process */ |
||
659 | |||
660 | /* data is in 11.21(q21) format for the 1024 point as there are 3 middle stages */ |
||
661 | /* data is in 9.23(q23) format for the 256 point as there are 2 middle stages */ |
||
662 | /* data is in 7.25(q25) format for the 64 point as there are 1 middle stage */ |
||
663 | /* data is in 5.27(q27) format for the 16 point as there are no middle stages */ |
||
664 | |||
665 | |||
666 | /* start of Last stage process */ |
||
667 | /* Initializations for the last stage */ |
||
668 | j = fftLen >> 2; |
||
669 | ptr1 = &pSrc[0]; |
||
670 | |||
671 | /* Calculations of last stage */ |
||
672 | do |
||
673 | { |
||
674 | |||
675 | #ifndef ARM_MATH_BIG_ENDIAN |
||
676 | |||
677 | /* Read xa (real), ya(imag) input */ |
||
678 | xaya = *__SIMD64(ptr1)++; |
||
679 | xa = (q31_t) xaya; |
||
680 | ya = (q31_t) (xaya >> 32); |
||
681 | |||
682 | /* Read xb (real), yb(imag) input */ |
||
683 | xbyb = *__SIMD64(ptr1)++; |
||
684 | xb = (q31_t) xbyb; |
||
685 | yb = (q31_t) (xbyb >> 32); |
||
686 | |||
687 | /* Read xc (real), yc(imag) input */ |
||
688 | xcyc = *__SIMD64(ptr1)++; |
||
689 | xc = (q31_t) xcyc; |
||
690 | yc = (q31_t) (xcyc >> 32); |
||
691 | |||
692 | /* Read xc (real), yc(imag) input */ |
||
693 | xdyd = *__SIMD64(ptr1)++; |
||
694 | xd = (q31_t) xdyd; |
||
695 | yd = (q31_t) (xdyd >> 32); |
||
696 | |||
697 | #else |
||
698 | |||
699 | /* Read xa (real), ya(imag) input */ |
||
700 | xaya = *__SIMD64(ptr1)++; |
||
701 | ya = (q31_t) xaya; |
||
702 | xa = (q31_t) (xaya >> 32); |
||
703 | |||
704 | /* Read xb (real), yb(imag) input */ |
||
705 | xbyb = *__SIMD64(ptr1)++; |
||
706 | yb = (q31_t) xbyb; |
||
707 | xb = (q31_t) (xbyb >> 32); |
||
708 | |||
709 | /* Read xc (real), yc(imag) input */ |
||
710 | xcyc = *__SIMD64(ptr1)++; |
||
711 | yc = (q31_t) xcyc; |
||
712 | xc = (q31_t) (xcyc >> 32); |
||
713 | |||
714 | /* Read xc (real), yc(imag) input */ |
||
715 | xdyd = *__SIMD64(ptr1)++; |
||
716 | yd = (q31_t) xdyd; |
||
717 | xd = (q31_t) (xdyd >> 32); |
||
718 | |||
719 | |||
720 | #endif |
||
721 | |||
722 | /* xa' = xa + xb + xc + xd */ |
||
723 | xa_out = xa + xb + xc + xd; |
||
724 | |||
725 | /* ya' = ya + yb + yc + yd */ |
||
726 | ya_out = ya + yb + yc + yd; |
||
727 | |||
728 | /* pointer updation for writing */ |
||
729 | ptr1 = ptr1 - 8u; |
||
730 | |||
731 | /* writing xa' and ya' */ |
||
732 | *ptr1++ = xa_out; |
||
733 | *ptr1++ = ya_out; |
||
734 | |||
735 | xc_out = (xa - xb + xc - xd); |
||
736 | yc_out = (ya - yb + yc - yd); |
||
737 | |||
738 | /* writing xc' and yc' */ |
||
739 | *ptr1++ = xc_out; |
||
740 | *ptr1++ = yc_out; |
||
741 | |||
742 | xb_out = (xa + yb - xc - yd); |
||
743 | yb_out = (ya - xb - yc + xd); |
||
744 | |||
745 | /* writing xb' and yb' */ |
||
746 | *ptr1++ = xb_out; |
||
747 | *ptr1++ = yb_out; |
||
748 | |||
749 | xd_out = (xa - yb - xc + yd); |
||
750 | yd_out = (ya + xb - yc - xd); |
||
751 | |||
752 | /* writing xd' and yd' */ |
||
753 | *ptr1++ = xd_out; |
||
754 | *ptr1++ = yd_out; |
||
755 | |||
756 | |||
757 | } while(--j); |
||
758 | |||
759 | /* output is in 11.21(q21) format for the 1024 point */ |
||
760 | /* output is in 9.23(q23) format for the 256 point */ |
||
761 | /* output is in 7.25(q25) format for the 64 point */ |
||
762 | /* output is in 5.27(q27) format for the 16 point */ |
||
763 | |||
764 | /* End of last stage process */ |
||
765 | |||
766 | } |
||
767 | |||
768 | |||
769 | /** |
||
770 | * @brief Core function for the Q31 CIFFT butterfly process. |
||
771 | * @param[in, out] *pSrc points to the in-place buffer of Q31 data type. |
||
772 | * @param[in] fftLen length of the FFT. |
||
773 | * @param[in] *pCoef points to twiddle coefficient buffer. |
||
774 | * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
775 | * @return none. |
||
776 | */ |
||
777 | |||
778 | |||
779 | /* |
||
780 | * Radix-4 IFFT algorithm used is : |
||
781 | * |
||
782 | * CIFFT uses same twiddle coefficients as CFFT Function |
||
783 | * x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4] |
||
784 | * |
||
785 | * |
||
786 | * IFFT is implemented with following changes in equations from FFT |
||
787 | * |
||
788 | * Input real and imaginary data: |
||
789 | * x(n) = xa + j * ya |
||
790 | * x(n+N/4 ) = xb + j * yb |
||
791 | * x(n+N/2 ) = xc + j * yc |
||
792 | * x(n+3N 4) = xd + j * yd |
||
793 | * |
||
794 | * |
||
795 | * Output real and imaginary data: |
||
796 | * x(4r) = xa'+ j * ya' |
||
797 | * x(4r+1) = xb'+ j * yb' |
||
798 | * x(4r+2) = xc'+ j * yc' |
||
799 | * x(4r+3) = xd'+ j * yd' |
||
800 | * |
||
801 | * |
||
802 | * Twiddle factors for radix-4 IFFT: |
||
803 | * Wn = co1 + j * (si1) |
||
804 | * W2n = co2 + j * (si2) |
||
805 | * W3n = co3 + j * (si3) |
||
806 | |||
807 | * The real and imaginary output values for the radix-4 butterfly are |
||
808 | * xa' = xa + xb + xc + xd |
||
809 | * ya' = ya + yb + yc + yd |
||
810 | * xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) |
||
811 | * yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) |
||
812 | * xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) |
||
813 | * yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) |
||
814 | * xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) |
||
815 | * yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) |
||
816 | * |
||
817 | */ |
||
818 | |||
819 | void arm_radix4_butterfly_inverse_q31( |
||
820 | q31_t * pSrc, |
||
821 | uint32_t fftLen, |
||
822 | q31_t * pCoef, |
||
823 | uint32_t twidCoefModifier) |
||
824 | { |
||
825 | #if defined(ARM_MATH_CM7) |
||
826 | uint32_t n1, n2, ia1, ia2, ia3, i0, i1, i2, i3, j, k; |
||
827 | q31_t t1, t2, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3; |
||
828 | q31_t xa, xb, xc, xd; |
||
829 | q31_t ya, yb, yc, yd; |
||
830 | q31_t xa_out, xb_out, xc_out, xd_out; |
||
831 | q31_t ya_out, yb_out, yc_out, yd_out; |
||
832 | |||
833 | q31_t *ptr1; |
||
834 | q63_t xaya, xbyb, xcyc, xdyd; |
||
835 | |||
836 | /* input is be 1.31(q31) format for all FFT sizes */ |
||
837 | /* Total process is divided into three stages */ |
||
838 | /* process first stage, middle stages, & last stage */ |
||
839 | |||
840 | /* Start of first stage process */ |
||
841 | |||
842 | /* Initializations for the first stage */ |
||
843 | n2 = fftLen; |
||
844 | n1 = n2; |
||
845 | /* n2 = fftLen/4 */ |
||
846 | n2 >>= 2u; |
||
847 | i0 = 0u; |
||
848 | ia1 = 0u; |
||
849 | |||
850 | j = n2; |
||
851 | |||
852 | do |
||
853 | { |
||
854 | |||
855 | /* input is in 1.31(q31) format and provide 4 guard bits for the input */ |
||
856 | |||
857 | /* index calculation for the input as, */ |
||
858 | /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2u], pSrc[i0 + 3fftLen/4] */ |
||
859 | i1 = i0 + n2; |
||
860 | i2 = i1 + n2; |
||
861 | i3 = i2 + n2; |
||
862 | |||
863 | /* Butterfly implementation */ |
||
864 | /* xa + xc */ |
||
865 | r1 = (pSrc[2u * i0] >> 4u) + (pSrc[2u * i2] >> 4u); |
||
866 | /* xa - xc */ |
||
867 | r2 = (pSrc[2u * i0] >> 4u) - (pSrc[2u * i2] >> 4u); |
||
868 | |||
869 | /* xb + xd */ |
||
870 | t1 = (pSrc[2u * i1] >> 4u) + (pSrc[2u * i3] >> 4u); |
||
871 | |||
872 | /* ya + yc */ |
||
873 | s1 = (pSrc[(2u * i0) + 1u] >> 4u) + (pSrc[(2u * i2) + 1u] >> 4u); |
||
874 | /* ya - yc */ |
||
875 | s2 = (pSrc[(2u * i0) + 1u] >> 4u) - (pSrc[(2u * i2) + 1u] >> 4u); |
||
876 | |||
877 | /* xa' = xa + xb + xc + xd */ |
||
878 | pSrc[2u * i0] = (r1 + t1); |
||
879 | /* (xa + xc) - (xb + xd) */ |
||
880 | r1 = r1 - t1; |
||
881 | /* yb + yd */ |
||
882 | t2 = (pSrc[(2u * i1) + 1u] >> 4u) + (pSrc[(2u * i3) + 1u] >> 4u); |
||
883 | /* ya' = ya + yb + yc + yd */ |
||
884 | pSrc[(2u * i0) + 1u] = (s1 + t2); |
||
885 | |||
886 | /* (ya + yc) - (yb + yd) */ |
||
887 | s1 = s1 - t2; |
||
888 | |||
889 | /* yb - yd */ |
||
890 | t1 = (pSrc[(2u * i1) + 1u] >> 4u) - (pSrc[(2u * i3) + 1u] >> 4u); |
||
891 | /* xb - xd */ |
||
892 | t2 = (pSrc[2u * i1] >> 4u) - (pSrc[2u * i3] >> 4u); |
||
893 | |||
894 | /* index calculation for the coefficients */ |
||
895 | ia2 = 2u * ia1; |
||
896 | co2 = pCoef[ia2 * 2u]; |
||
897 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
898 | |||
899 | /* xc' = (xa-xb+xc-xd)co2 - (ya-yb+yc-yd)(si2) */ |
||
900 | pSrc[2u * i1] = (((int32_t) (((q63_t) r1 * co2) >> 32)) - |
||
901 | ((int32_t) (((q63_t) s1 * si2) >> 32))) << 1u; |
||
902 | |||
903 | /* yc' = (ya-yb+yc-yd)co2 + (xa-xb+xc-xd)(si2) */ |
||
904 | pSrc[2u * i1 + 1u] = (((int32_t) (((q63_t) s1 * co2) >> 32)) + |
||
905 | ((int32_t) (((q63_t) r1 * si2) >> 32))) << 1u; |
||
906 | |||
907 | /* (xa - xc) - (yb - yd) */ |
||
908 | r1 = r2 - t1; |
||
909 | /* (xa - xc) + (yb - yd) */ |
||
910 | r2 = r2 + t1; |
||
911 | |||
912 | /* (ya - yc) + (xb - xd) */ |
||
913 | s1 = s2 + t2; |
||
914 | /* (ya - yc) - (xb - xd) */ |
||
915 | s2 = s2 - t2; |
||
916 | |||
917 | co1 = pCoef[ia1 * 2u]; |
||
918 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
919 | |||
920 | /* xb' = (xa+yb-xc-yd)co1 - (ya-xb-yc+xd)(si1) */ |
||
921 | pSrc[2u * i2] = (((int32_t) (((q63_t) r1 * co1) >> 32)) - |
||
922 | ((int32_t) (((q63_t) s1 * si1) >> 32))) << 1u; |
||
923 | |||
924 | /* yb' = (ya-xb-yc+xd)co1 + (xa+yb-xc-yd)(si1) */ |
||
925 | pSrc[(2u * i2) + 1u] = (((int32_t) (((q63_t) s1 * co1) >> 32)) + |
||
926 | ((int32_t) (((q63_t) r1 * si1) >> 32))) << 1u; |
||
927 | |||
928 | /* index calculation for the coefficients */ |
||
929 | ia3 = 3u * ia1; |
||
930 | co3 = pCoef[ia3 * 2u]; |
||
931 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
932 | |||
933 | /* xd' = (xa-yb-xc+yd)co3 - (ya+xb-yc-xd)(si3) */ |
||
934 | pSrc[2u * i3] = (((int32_t) (((q63_t) r2 * co3) >> 32)) - |
||
935 | ((int32_t) (((q63_t) s2 * si3) >> 32))) << 1u; |
||
936 | |||
937 | /* yd' = (ya+xb-yc-xd)co3 + (xa-yb-xc+yd)(si3) */ |
||
938 | pSrc[(2u * i3) + 1u] = (((int32_t) (((q63_t) s2 * co3) >> 32)) + |
||
939 | ((int32_t) (((q63_t) r2 * si3) >> 32))) << 1u; |
||
940 | |||
941 | /* Twiddle coefficients index modifier */ |
||
942 | ia1 = ia1 + twidCoefModifier; |
||
943 | |||
944 | /* Updating input index */ |
||
945 | i0 = i0 + 1u; |
||
946 | |||
947 | } while(--j); |
||
948 | |||
949 | /* data is in 5.27(q27) format */ |
||
950 | /* each stage provides two down scaling of the input */ |
||
951 | |||
952 | |||
953 | /* Start of Middle stages process */ |
||
954 | |||
955 | twidCoefModifier <<= 2u; |
||
956 | |||
957 | /* Calculation of second stage to excluding last stage */ |
||
958 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
959 | { |
||
960 | /* Initializations for the first stage */ |
||
961 | n1 = n2; |
||
962 | n2 >>= 2u; |
||
963 | ia1 = 0u; |
||
964 | |||
965 | for (j = 0; j <= (n2 - 1u); j++) |
||
966 | { |
||
967 | /* index calculation for the coefficients */ |
||
968 | ia2 = ia1 + ia1; |
||
969 | ia3 = ia2 + ia1; |
||
970 | co1 = pCoef[ia1 * 2u]; |
||
971 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
972 | co2 = pCoef[ia2 * 2u]; |
||
973 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
974 | co3 = pCoef[ia3 * 2u]; |
||
975 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
976 | /* Twiddle coefficients index modifier */ |
||
977 | ia1 = ia1 + twidCoefModifier; |
||
978 | |||
979 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
980 | { |
||
981 | /* index calculation for the input as, */ |
||
982 | /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2u], pSrc[i0 + 3fftLen/4] */ |
||
983 | i1 = i0 + n2; |
||
984 | i2 = i1 + n2; |
||
985 | i3 = i2 + n2; |
||
986 | |||
987 | /* Butterfly implementation */ |
||
988 | /* xa + xc */ |
||
989 | r1 = pSrc[2u * i0] + pSrc[2u * i2]; |
||
990 | /* xa - xc */ |
||
991 | r2 = pSrc[2u * i0] - pSrc[2u * i2]; |
||
992 | |||
993 | /* ya + yc */ |
||
994 | s1 = pSrc[(2u * i0) + 1u] + pSrc[(2u * i2) + 1u]; |
||
995 | /* ya - yc */ |
||
996 | s2 = pSrc[(2u * i0) + 1u] - pSrc[(2u * i2) + 1u]; |
||
997 | |||
998 | /* xb + xd */ |
||
999 | t1 = pSrc[2u * i1] + pSrc[2u * i3]; |
||
1000 | |||
1001 | /* xa' = xa + xb + xc + xd */ |
||
1002 | pSrc[2u * i0] = (r1 + t1) >> 2u; |
||
1003 | /* xa + xc -(xb + xd) */ |
||
1004 | r1 = r1 - t1; |
||
1005 | /* yb + yd */ |
||
1006 | t2 = pSrc[(2u * i1) + 1u] + pSrc[(2u * i3) + 1u]; |
||
1007 | /* ya' = ya + yb + yc + yd */ |
||
1008 | pSrc[(2u * i0) + 1u] = (s1 + t2) >> 2u; |
||
1009 | |||
1010 | /* (ya + yc) - (yb + yd) */ |
||
1011 | s1 = s1 - t2; |
||
1012 | |||
1013 | /* (yb - yd) */ |
||
1014 | t1 = pSrc[(2u * i1) + 1u] - pSrc[(2u * i3) + 1u]; |
||
1015 | /* (xb - xd) */ |
||
1016 | t2 = pSrc[2u * i1] - pSrc[2u * i3]; |
||
1017 | |||
1018 | /* xc' = (xa-xb+xc-xd)co2 - (ya-yb+yc-yd)(si2) */ |
||
1019 | pSrc[2u * i1] = (((int32_t) (((q63_t) r1 * co2) >> 32u)) - |
||
1020 | ((int32_t) (((q63_t) s1 * si2) >> 32u))) >> 1u; |
||
1021 | |||
1022 | /* yc' = (ya-yb+yc-yd)co2 + (xa-xb+xc-xd)(si2) */ |
||
1023 | pSrc[(2u * i1) + 1u] = |
||
1024 | (((int32_t) (((q63_t) s1 * co2) >> 32u)) + |
||
1025 | ((int32_t) (((q63_t) r1 * si2) >> 32u))) >> 1u; |
||
1026 | |||
1027 | /* (xa - xc) - (yb - yd) */ |
||
1028 | r1 = r2 - t1; |
||
1029 | /* (xa - xc) + (yb - yd) */ |
||
1030 | r2 = r2 + t1; |
||
1031 | |||
1032 | /* (ya - yc) + (xb - xd) */ |
||
1033 | s1 = s2 + t2; |
||
1034 | /* (ya - yc) - (xb - xd) */ |
||
1035 | s2 = s2 - t2; |
||
1036 | |||
1037 | /* xb' = (xa+yb-xc-yd)co1 - (ya-xb-yc+xd)(si1) */ |
||
1038 | pSrc[2u * i2] = (((int32_t) (((q63_t) r1 * co1) >> 32)) - |
||
1039 | ((int32_t) (((q63_t) s1 * si1) >> 32))) >> 1u; |
||
1040 | |||
1041 | /* yb' = (ya-xb-yc+xd)co1 + (xa+yb-xc-yd)(si1) */ |
||
1042 | pSrc[(2u * i2) + 1u] = (((int32_t) (((q63_t) s1 * co1) >> 32)) + |
||
1043 | ((int32_t) (((q63_t) r1 * si1) >> 32))) >> 1u; |
||
1044 | |||
1045 | /* xd' = (xa-yb-xc+yd)co3 - (ya+xb-yc-xd)(si3) */ |
||
1046 | pSrc[(2u * i3)] = (((int32_t) (((q63_t) r2 * co3) >> 32)) - |
||
1047 | ((int32_t) (((q63_t) s2 * si3) >> 32))) >> 1u; |
||
1048 | |||
1049 | /* yd' = (ya+xb-yc-xd)co3 + (xa-yb-xc+yd)(si3) */ |
||
1050 | pSrc[(2u * i3) + 1u] = (((int32_t) (((q63_t) s2 * co3) >> 32)) + |
||
1051 | ((int32_t) (((q63_t) r2 * si3) >> 32))) >> 1u; |
||
1052 | } |
||
1053 | } |
||
1054 | twidCoefModifier <<= 2u; |
||
1055 | } |
||
1056 | #else |
||
1057 | uint32_t n1, n2, ia1, ia2, ia3, i0, j, k; |
||
1058 | q31_t t1, t2, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3; |
||
1059 | q31_t xa, xb, xc, xd; |
||
1060 | q31_t ya, yb, yc, yd; |
||
1061 | q31_t xa_out, xb_out, xc_out, xd_out; |
||
1062 | q31_t ya_out, yb_out, yc_out, yd_out; |
||
1063 | |||
1064 | q31_t *ptr1; |
||
1065 | q31_t *pSi0; |
||
1066 | q31_t *pSi1; |
||
1067 | q31_t *pSi2; |
||
1068 | q31_t *pSi3; |
||
1069 | q63_t xaya, xbyb, xcyc, xdyd; |
||
1070 | |||
1071 | /* input is be 1.31(q31) format for all FFT sizes */ |
||
1072 | /* Total process is divided into three stages */ |
||
1073 | /* process first stage, middle stages, & last stage */ |
||
1074 | |||
1075 | /* Start of first stage process */ |
||
1076 | |||
1077 | /* Initializations for the first stage */ |
||
1078 | n2 = fftLen; |
||
1079 | n1 = n2; |
||
1080 | /* n2 = fftLen/4 */ |
||
1081 | n2 >>= 2u; |
||
1082 | |||
1083 | ia1 = 0u; |
||
1084 | |||
1085 | j = n2; |
||
1086 | |||
1087 | pSi0 = pSrc; |
||
1088 | pSi1 = pSi0 + 2 * n2; |
||
1089 | pSi2 = pSi1 + 2 * n2; |
||
1090 | pSi3 = pSi2 + 2 * n2; |
||
1091 | |||
1092 | do |
||
1093 | { |
||
1094 | /* Butterfly implementation */ |
||
1095 | /* xa + xc */ |
||
1096 | r1 = (pSi0[0] >> 4u) + (pSi2[0] >> 4u); |
||
1097 | /* xa - xc */ |
||
1098 | r2 = (pSi0[0] >> 4u) - (pSi2[0] >> 4u); |
||
1099 | |||
1100 | /* xb + xd */ |
||
1101 | t1 = (pSi1[0] >> 4u) + (pSi3[0] >> 4u); |
||
1102 | |||
1103 | /* ya + yc */ |
||
1104 | s1 = (pSi0[1] >> 4u) + (pSi2[1] >> 4u); |
||
1105 | /* ya - yc */ |
||
1106 | s2 = (pSi0[1] >> 4u) - (pSi2[1] >> 4u); |
||
1107 | |||
1108 | /* xa' = xa + xb + xc + xd */ |
||
1109 | *pSi0++ = (r1 + t1); |
||
1110 | /* (xa + xc) - (xb + xd) */ |
||
1111 | r1 = r1 - t1; |
||
1112 | /* yb + yd */ |
||
1113 | t2 = (pSi1[1] >> 4u) + (pSi3[1] >> 4u); |
||
1114 | /* ya' = ya + yb + yc + yd */ |
||
1115 | *pSi0++ = (s1 + t2); |
||
1116 | |||
1117 | /* (ya + yc) - (yb + yd) */ |
||
1118 | s1 = s1 - t2; |
||
1119 | |||
1120 | /* yb - yd */ |
||
1121 | t1 = (pSi1[1] >> 4u) - (pSi3[1] >> 4u); |
||
1122 | /* xb - xd */ |
||
1123 | t2 = (pSi1[0] >> 4u) - (pSi3[0] >> 4u); |
||
1124 | |||
1125 | /* index calculation for the coefficients */ |
||
1126 | ia2 = 2u * ia1; |
||
1127 | co2 = pCoef[ia2 * 2u]; |
||
1128 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
1129 | |||
1130 | /* xc' = (xa-xb+xc-xd)co2 - (ya-yb+yc-yd)(si2) */ |
||
1131 | *pSi1++ = (((int32_t) (((q63_t) r1 * co2) >> 32)) - |
||
1132 | ((int32_t) (((q63_t) s1 * si2) >> 32))) << 1u; |
||
1133 | |||
1134 | /* yc' = (ya-yb+yc-yd)co2 + (xa-xb+xc-xd)(si2) */ |
||
1135 | *pSi1++ = (((int32_t) (((q63_t) s1 * co2) >> 32)) + |
||
1136 | ((int32_t) (((q63_t) r1 * si2) >> 32))) << 1u; |
||
1137 | |||
1138 | /* (xa - xc) - (yb - yd) */ |
||
1139 | r1 = r2 - t1; |
||
1140 | /* (xa - xc) + (yb - yd) */ |
||
1141 | r2 = r2 + t1; |
||
1142 | |||
1143 | /* (ya - yc) + (xb - xd) */ |
||
1144 | s1 = s2 + t2; |
||
1145 | /* (ya - yc) - (xb - xd) */ |
||
1146 | s2 = s2 - t2; |
||
1147 | |||
1148 | co1 = pCoef[ia1 * 2u]; |
||
1149 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
1150 | |||
1151 | /* xb' = (xa+yb-xc-yd)co1 - (ya-xb-yc+xd)(si1) */ |
||
1152 | *pSi2++ = (((int32_t) (((q63_t) r1 * co1) >> 32)) - |
||
1153 | ((int32_t) (((q63_t) s1 * si1) >> 32))) << 1u; |
||
1154 | |||
1155 | /* yb' = (ya-xb-yc+xd)co1 + (xa+yb-xc-yd)(si1) */ |
||
1156 | *pSi2++ = (((int32_t) (((q63_t) s1 * co1) >> 32)) + |
||
1157 | ((int32_t) (((q63_t) r1 * si1) >> 32))) << 1u; |
||
1158 | |||
1159 | /* index calculation for the coefficients */ |
||
1160 | ia3 = 3u * ia1; |
||
1161 | co3 = pCoef[ia3 * 2u]; |
||
1162 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
1163 | |||
1164 | /* xd' = (xa-yb-xc+yd)co3 - (ya+xb-yc-xd)(si3) */ |
||
1165 | *pSi3++ = (((int32_t) (((q63_t) r2 * co3) >> 32)) - |
||
1166 | ((int32_t) (((q63_t) s2 * si3) >> 32))) << 1u; |
||
1167 | |||
1168 | /* yd' = (ya+xb-yc-xd)co3 + (xa-yb-xc+yd)(si3) */ |
||
1169 | *pSi3++ = (((int32_t) (((q63_t) s2 * co3) >> 32)) + |
||
1170 | ((int32_t) (((q63_t) r2 * si3) >> 32))) << 1u; |
||
1171 | |||
1172 | /* Twiddle coefficients index modifier */ |
||
1173 | ia1 = ia1 + twidCoefModifier; |
||
1174 | |||
1175 | } while(--j); |
||
1176 | |||
1177 | /* data is in 5.27(q27) format */ |
||
1178 | /* each stage provides two down scaling of the input */ |
||
1179 | |||
1180 | |||
1181 | /* Start of Middle stages process */ |
||
1182 | |||
1183 | twidCoefModifier <<= 2u; |
||
1184 | |||
1185 | /* Calculation of second stage to excluding last stage */ |
||
1186 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
1187 | { |
||
1188 | /* Initializations for the first stage */ |
||
1189 | n1 = n2; |
||
1190 | n2 >>= 2u; |
||
1191 | ia1 = 0u; |
||
1192 | |||
1193 | for (j = 0; j <= (n2 - 1u); j++) |
||
1194 | { |
||
1195 | /* index calculation for the coefficients */ |
||
1196 | ia2 = ia1 + ia1; |
||
1197 | ia3 = ia2 + ia1; |
||
1198 | co1 = pCoef[ia1 * 2u]; |
||
1199 | si1 = pCoef[(ia1 * 2u) + 1u]; |
||
1200 | co2 = pCoef[ia2 * 2u]; |
||
1201 | si2 = pCoef[(ia2 * 2u) + 1u]; |
||
1202 | co3 = pCoef[ia3 * 2u]; |
||
1203 | si3 = pCoef[(ia3 * 2u) + 1u]; |
||
1204 | /* Twiddle coefficients index modifier */ |
||
1205 | ia1 = ia1 + twidCoefModifier; |
||
1206 | |||
1207 | pSi0 = pSrc + 2 * j; |
||
1208 | pSi1 = pSi0 + 2 * n2; |
||
1209 | pSi2 = pSi1 + 2 * n2; |
||
1210 | pSi3 = pSi2 + 2 * n2; |
||
1211 | |||
1212 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
1213 | { |
||
1214 | /* Butterfly implementation */ |
||
1215 | /* xa + xc */ |
||
1216 | r1 = pSi0[0] + pSi2[0]; |
||
1217 | |||
1218 | /* xa - xc */ |
||
1219 | r2 = pSi0[0] - pSi2[0]; |
||
1220 | |||
1221 | |||
1222 | /* ya + yc */ |
||
1223 | s1 = pSi0[1] + pSi2[1]; |
||
1224 | |||
1225 | /* ya - yc */ |
||
1226 | s2 = pSi0[1] - pSi2[1]; |
||
1227 | |||
1228 | |||
1229 | /* xb + xd */ |
||
1230 | t1 = pSi1[0] + pSi3[0]; |
||
1231 | |||
1232 | |||
1233 | /* xa' = xa + xb + xc + xd */ |
||
1234 | pSi0[0] = (r1 + t1) >> 2u; |
||
1235 | /* xa + xc -(xb + xd) */ |
||
1236 | r1 = r1 - t1; |
||
1237 | /* yb + yd */ |
||
1238 | t2 = pSi1[1] + pSi3[1]; |
||
1239 | |||
1240 | /* ya' = ya + yb + yc + yd */ |
||
1241 | pSi0[1] = (s1 + t2) >> 2u; |
||
1242 | pSi0 += 2 * n1; |
||
1243 | |||
1244 | /* (ya + yc) - (yb + yd) */ |
||
1245 | s1 = s1 - t2; |
||
1246 | |||
1247 | /* (yb - yd) */ |
||
1248 | t1 = pSi1[1] - pSi3[1]; |
||
1249 | |||
1250 | /* (xb - xd) */ |
||
1251 | t2 = pSi1[0] - pSi3[0]; |
||
1252 | |||
1253 | |||
1254 | /* xc' = (xa-xb+xc-xd)co2 - (ya-yb+yc-yd)(si2) */ |
||
1255 | pSi1[0] = (((int32_t) (((q63_t) r1 * co2) >> 32u)) - |
||
1256 | ((int32_t) (((q63_t) s1 * si2) >> 32u))) >> 1u; |
||
1257 | |||
1258 | /* yc' = (ya-yb+yc-yd)co2 + (xa-xb+xc-xd)(si2) */ |
||
1259 | pSi1[1] = |
||
1260 | |||
1261 | (((int32_t) (((q63_t) s1 * co2) >> 32u)) + |
||
1262 | ((int32_t) (((q63_t) r1 * si2) >> 32u))) >> 1u; |
||
1263 | pSi1 += 2 * n1; |
||
1264 | |||
1265 | /* (xa - xc) - (yb - yd) */ |
||
1266 | r1 = r2 - t1; |
||
1267 | /* (xa - xc) + (yb - yd) */ |
||
1268 | r2 = r2 + t1; |
||
1269 | |||
1270 | /* (ya - yc) + (xb - xd) */ |
||
1271 | s1 = s2 + t2; |
||
1272 | /* (ya - yc) - (xb - xd) */ |
||
1273 | s2 = s2 - t2; |
||
1274 | |||
1275 | /* xb' = (xa+yb-xc-yd)co1 - (ya-xb-yc+xd)(si1) */ |
||
1276 | pSi2[0] = (((int32_t) (((q63_t) r1 * co1) >> 32)) - |
||
1277 | ((int32_t) (((q63_t) s1 * si1) >> 32))) >> 1u; |
||
1278 | |||
1279 | /* yb' = (ya-xb-yc+xd)co1 + (xa+yb-xc-yd)(si1) */ |
||
1280 | pSi2[1] = (((int32_t) (((q63_t) s1 * co1) >> 32)) + |
||
1281 | ((int32_t) (((q63_t) r1 * si1) >> 32))) >> 1u; |
||
1282 | pSi2 += 2 * n1; |
||
1283 | |||
1284 | /* xd' = (xa-yb-xc+yd)co3 - (ya+xb-yc-xd)(si3) */ |
||
1285 | pSi3[0] = (((int32_t) (((q63_t) r2 * co3) >> 32)) - |
||
1286 | ((int32_t) (((q63_t) s2 * si3) >> 32))) >> 1u; |
||
1287 | |||
1288 | /* yd' = (ya+xb-yc-xd)co3 + (xa-yb-xc+yd)(si3) */ |
||
1289 | pSi3[1] = (((int32_t) (((q63_t) s2 * co3) >> 32)) + |
||
1290 | ((int32_t) (((q63_t) r2 * si3) >> 32))) >> 1u; |
||
1291 | pSi3 += 2 * n1; |
||
1292 | } |
||
1293 | } |
||
1294 | twidCoefModifier <<= 2u; |
||
1295 | } |
||
1296 | #endif |
||
1297 | |||
1298 | /* End of Middle stages process */ |
||
1299 | |||
1300 | /* data is in 11.21(q21) format for the 1024 point as there are 3 middle stages */ |
||
1301 | /* data is in 9.23(q23) format for the 256 point as there are 2 middle stages */ |
||
1302 | /* data is in 7.25(q25) format for the 64 point as there are 1 middle stage */ |
||
1303 | /* data is in 5.27(q27) format for the 16 point as there are no middle stages */ |
||
1304 | |||
1305 | |||
1306 | /* Start of last stage process */ |
||
1307 | |||
1308 | |||
1309 | /* Initializations for the last stage */ |
||
1310 | j = fftLen >> 2; |
||
1311 | ptr1 = &pSrc[0]; |
||
1312 | |||
1313 | /* Calculations of last stage */ |
||
1314 | do |
||
1315 | { |
||
1316 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1317 | /* Read xa (real), ya(imag) input */ |
||
1318 | xaya = *__SIMD64(ptr1)++; |
||
1319 | xa = (q31_t) xaya; |
||
1320 | ya = (q31_t) (xaya >> 32); |
||
1321 | |||
1322 | /* Read xb (real), yb(imag) input */ |
||
1323 | xbyb = *__SIMD64(ptr1)++; |
||
1324 | xb = (q31_t) xbyb; |
||
1325 | yb = (q31_t) (xbyb >> 32); |
||
1326 | |||
1327 | /* Read xc (real), yc(imag) input */ |
||
1328 | xcyc = *__SIMD64(ptr1)++; |
||
1329 | xc = (q31_t) xcyc; |
||
1330 | yc = (q31_t) (xcyc >> 32); |
||
1331 | |||
1332 | /* Read xc (real), yc(imag) input */ |
||
1333 | xdyd = *__SIMD64(ptr1)++; |
||
1334 | xd = (q31_t) xdyd; |
||
1335 | yd = (q31_t) (xdyd >> 32); |
||
1336 | |||
1337 | #else |
||
1338 | |||
1339 | /* Read xa (real), ya(imag) input */ |
||
1340 | xaya = *__SIMD64(ptr1)++; |
||
1341 | ya = (q31_t) xaya; |
||
1342 | xa = (q31_t) (xaya >> 32); |
||
1343 | |||
1344 | /* Read xb (real), yb(imag) input */ |
||
1345 | xbyb = *__SIMD64(ptr1)++; |
||
1346 | yb = (q31_t) xbyb; |
||
1347 | xb = (q31_t) (xbyb >> 32); |
||
1348 | |||
1349 | /* Read xc (real), yc(imag) input */ |
||
1350 | xcyc = *__SIMD64(ptr1)++; |
||
1351 | yc = (q31_t) xcyc; |
||
1352 | xc = (q31_t) (xcyc >> 32); |
||
1353 | |||
1354 | /* Read xc (real), yc(imag) input */ |
||
1355 | xdyd = *__SIMD64(ptr1)++; |
||
1356 | yd = (q31_t) xdyd; |
||
1357 | xd = (q31_t) (xdyd >> 32); |
||
1358 | |||
1359 | |||
1360 | #endif |
||
1361 | |||
1362 | /* xa' = xa + xb + xc + xd */ |
||
1363 | xa_out = xa + xb + xc + xd; |
||
1364 | |||
1365 | /* ya' = ya + yb + yc + yd */ |
||
1366 | ya_out = ya + yb + yc + yd; |
||
1367 | |||
1368 | /* pointer updation for writing */ |
||
1369 | ptr1 = ptr1 - 8u; |
||
1370 | |||
1371 | /* writing xa' and ya' */ |
||
1372 | *ptr1++ = xa_out; |
||
1373 | *ptr1++ = ya_out; |
||
1374 | |||
1375 | xc_out = (xa - xb + xc - xd); |
||
1376 | yc_out = (ya - yb + yc - yd); |
||
1377 | |||
1378 | /* writing xc' and yc' */ |
||
1379 | *ptr1++ = xc_out; |
||
1380 | *ptr1++ = yc_out; |
||
1381 | |||
1382 | xb_out = (xa - yb - xc + yd); |
||
1383 | yb_out = (ya + xb - yc - xd); |
||
1384 | |||
1385 | /* writing xb' and yb' */ |
||
1386 | *ptr1++ = xb_out; |
||
1387 | *ptr1++ = yb_out; |
||
1388 | |||
1389 | xd_out = (xa + yb - xc - yd); |
||
1390 | yd_out = (ya - xb - yc + xd); |
||
1391 | |||
1392 | /* writing xd' and yd' */ |
||
1393 | *ptr1++ = xd_out; |
||
1394 | *ptr1++ = yd_out; |
||
1395 | |||
1396 | } while(--j); |
||
1397 | |||
1398 | /* output is in 11.21(q21) format for the 1024 point */ |
||
1399 | /* output is in 9.23(q23) format for the 256 point */ |
||
1400 | /* output is in 7.25(q25) format for the 64 point */ |
||
1401 | /* output is in 5.27(q27) format for the 16 point */ |
||
1402 | |||
1403 | /* End of last stage process */ |
||
1404 | } |