Go to most recent revision | Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* ---------------------------------------------------------------------- |
| 2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
| 3 | * |
||
| 4 | * $Date: 19. March 2015 |
||
| 5 | * $Revision: V.1.4.5 |
||
| 6 | * |
||
| 7 | * Project: CMSIS DSP Library |
||
| 8 | * Title: arm_cfft_f32.c |
||
| 9 | * |
||
| 10 | * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function |
||
| 11 | * |
||
| 12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
| 13 | * |
||
| 14 | * Redistribution and use in source and binary forms, with or without |
||
| 15 | * modification, are permitted provided that the following conditions |
||
| 16 | * are met: |
||
| 17 | * - Redistributions of source code must retain the above copyright |
||
| 18 | * notice, this list of conditions and the following disclaimer. |
||
| 19 | * - Redistributions in binary form must reproduce the above copyright |
||
| 20 | * notice, this list of conditions and the following disclaimer in |
||
| 21 | * the documentation and/or other materials provided with the |
||
| 22 | * distribution. |
||
| 23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
| 24 | * may be used to endorse or promote products derived from this |
||
| 25 | * software without specific prior written permission. |
||
| 26 | * |
||
| 27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
| 28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
| 29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
| 30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
| 31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
| 33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
| 34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
| 35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
| 36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
| 37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
| 38 | * POSSIBILITY OF SUCH DAMAGE. |
||
| 39 | * -------------------------------------------------------------------- */ |
||
| 40 | |||
| 41 | #include "arm_math.h" |
||
| 42 | #include "arm_common_tables.h" |
||
| 43 | |||
| 44 | extern void arm_radix8_butterfly_f32( |
||
| 45 | float32_t * pSrc, |
||
| 46 | uint16_t fftLen, |
||
| 47 | const float32_t * pCoef, |
||
| 48 | uint16_t twidCoefModifier); |
||
| 49 | |||
| 50 | extern void arm_bitreversal_32( |
||
| 51 | uint32_t * pSrc, |
||
| 52 | const uint16_t bitRevLen, |
||
| 53 | const uint16_t * pBitRevTable); |
||
| 54 | |||
| 55 | /** |
||
| 56 | * @ingroup groupTransforms |
||
| 57 | */ |
||
| 58 | |||
| 59 | /** |
||
| 60 | * @defgroup ComplexFFT Complex FFT Functions |
||
| 61 | * |
||
| 62 | * \par |
||
| 63 | * The Fast Fourier Transform (FFT) is an efficient algorithm for computing the |
||
| 64 | * Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster |
||
| 65 | * than the DFT, especially for long lengths. |
||
| 66 | * The algorithms described in this section |
||
| 67 | * operate on complex data. A separate set of functions is devoted to handling |
||
| 68 | * of real sequences. |
||
| 69 | * \par |
||
| 70 | * There are separate algorithms for handling floating-point, Q15, and Q31 data |
||
| 71 | * types. The algorithms available for each data type are described next. |
||
| 72 | * \par |
||
| 73 | * The FFT functions operate in-place. That is, the array holding the input data |
||
| 74 | * will also be used to hold the corresponding result. The input data is complex |
||
| 75 | * and contains <code>2*fftLen</code> interleaved values as shown below. |
||
| 76 | * <pre> {real[0], imag[0], real[1], imag[1],..} </pre> |
||
| 77 | * The FFT result will be contained in the same array and the frequency domain |
||
| 78 | * values will have the same interleaving. |
||
| 79 | * |
||
| 80 | * \par Floating-point |
||
| 81 | * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 |
||
| 82 | * stages are performed along with a single radix-2 or radix-4 stage, as needed. |
||
| 83 | * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses |
||
| 84 | * a different twiddle factor table. |
||
| 85 | * \par |
||
| 86 | * The function uses the standard FFT definition and output values may grow by a |
||
| 87 | * factor of <code>fftLen</code> when computing the forward transform. The |
||
| 88 | * inverse transform includes a scale of <code>1/fftLen</code> as part of the |
||
| 89 | * calculation and this matches the textbook definition of the inverse FFT. |
||
| 90 | * \par |
||
| 91 | * Pre-initialized data structures containing twiddle factors and bit reversal |
||
| 92 | * tables are provided and defined in <code>arm_const_structs.h</code>. Include |
||
| 93 | * this header in your function and then pass one of the constant structures as |
||
| 94 | * an argument to arm_cfft_f32. For example: |
||
| 95 | * \par |
||
| 96 | * <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code> |
||
| 97 | * \par |
||
| 98 | * computes a 64-point inverse complex FFT including bit reversal. |
||
| 99 | * The data structures are treated as constant data and not modified during the |
||
| 100 | * calculation. The same data structure can be reused for multiple transforms |
||
| 101 | * including mixing forward and inverse transforms. |
||
| 102 | * \par |
||
| 103 | * Earlier releases of the library provided separate radix-2 and radix-4 |
||
| 104 | * algorithms that operated on floating-point data. These functions are still |
||
| 105 | * provided but are deprecated. The older functions are slower and less general |
||
| 106 | * than the new functions. |
||
| 107 | * \par |
||
| 108 | * An example of initialization of the constants for the arm_cfft_f32 function follows: |
||
| 109 | * \code |
||
| 110 | * const static arm_cfft_instance_f32 *S; |
||
| 111 | * ... |
||
| 112 | * switch (length) { |
||
| 113 | * case 16: |
||
| 114 | * S = &arm_cfft_sR_f32_len16; |
||
| 115 | * break; |
||
| 116 | * case 32: |
||
| 117 | * S = &arm_cfft_sR_f32_len32; |
||
| 118 | * break; |
||
| 119 | * case 64: |
||
| 120 | * S = &arm_cfft_sR_f32_len64; |
||
| 121 | * break; |
||
| 122 | * case 128: |
||
| 123 | * S = &arm_cfft_sR_f32_len128; |
||
| 124 | * break; |
||
| 125 | * case 256: |
||
| 126 | * S = &arm_cfft_sR_f32_len256; |
||
| 127 | * break; |
||
| 128 | * case 512: |
||
| 129 | * S = &arm_cfft_sR_f32_len512; |
||
| 130 | * break; |
||
| 131 | * case 1024: |
||
| 132 | * S = &arm_cfft_sR_f32_len1024; |
||
| 133 | * break; |
||
| 134 | * case 2048: |
||
| 135 | * S = &arm_cfft_sR_f32_len2048; |
||
| 136 | * break; |
||
| 137 | * case 4096: |
||
| 138 | * S = &arm_cfft_sR_f32_len4096; |
||
| 139 | * break; |
||
| 140 | * } |
||
| 141 | * \endcode |
||
| 142 | * \par Q15 and Q31 |
||
| 143 | * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4 |
||
| 144 | * stages are performed along with a single radix-2 stage, as needed. |
||
| 145 | * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses |
||
| 146 | * a different twiddle factor table. |
||
| 147 | * \par |
||
| 148 | * The function uses the standard FFT definition and output values may grow by a |
||
| 149 | * factor of <code>fftLen</code> when computing the forward transform. The |
||
| 150 | * inverse transform includes a scale of <code>1/fftLen</code> as part of the |
||
| 151 | * calculation and this matches the textbook definition of the inverse FFT. |
||
| 152 | * \par |
||
| 153 | * Pre-initialized data structures containing twiddle factors and bit reversal |
||
| 154 | * tables are provided and defined in <code>arm_const_structs.h</code>. Include |
||
| 155 | * this header in your function and then pass one of the constant structures as |
||
| 156 | * an argument to arm_cfft_q31. For example: |
||
| 157 | * \par |
||
| 158 | * <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code> |
||
| 159 | * \par |
||
| 160 | * computes a 64-point inverse complex FFT including bit reversal. |
||
| 161 | * The data structures are treated as constant data and not modified during the |
||
| 162 | * calculation. The same data structure can be reused for multiple transforms |
||
| 163 | * including mixing forward and inverse transforms. |
||
| 164 | * \par |
||
| 165 | * Earlier releases of the library provided separate radix-2 and radix-4 |
||
| 166 | * algorithms that operated on floating-point data. These functions are still |
||
| 167 | * provided but are deprecated. The older functions are slower and less general |
||
| 168 | * than the new functions. |
||
| 169 | * \par |
||
| 170 | * An example of initialization of the constants for the arm_cfft_q31 function follows: |
||
| 171 | * \code |
||
| 172 | * const static arm_cfft_instance_q31 *S; |
||
| 173 | * ... |
||
| 174 | * switch (length) { |
||
| 175 | * case 16: |
||
| 176 | * S = &arm_cfft_sR_q31_len16; |
||
| 177 | * break; |
||
| 178 | * case 32: |
||
| 179 | * S = &arm_cfft_sR_q31_len32; |
||
| 180 | * break; |
||
| 181 | * case 64: |
||
| 182 | * S = &arm_cfft_sR_q31_len64; |
||
| 183 | * break; |
||
| 184 | * case 128: |
||
| 185 | * S = &arm_cfft_sR_q31_len128; |
||
| 186 | * break; |
||
| 187 | * case 256: |
||
| 188 | * S = &arm_cfft_sR_q31_len256; |
||
| 189 | * break; |
||
| 190 | * case 512: |
||
| 191 | * S = &arm_cfft_sR_q31_len512; |
||
| 192 | * break; |
||
| 193 | * case 1024: |
||
| 194 | * S = &arm_cfft_sR_q31_len1024; |
||
| 195 | * break; |
||
| 196 | * case 2048: |
||
| 197 | * S = &arm_cfft_sR_q31_len2048; |
||
| 198 | * break; |
||
| 199 | * case 4096: |
||
| 200 | * S = &arm_cfft_sR_q31_len4096; |
||
| 201 | * break; |
||
| 202 | * } |
||
| 203 | * \endcode |
||
| 204 | * |
||
| 205 | */ |
||
| 206 | |||
| 207 | void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1) |
||
| 208 | { |
||
| 209 | uint32_t L = S->fftLen; |
||
| 210 | float32_t * pCol1, * pCol2, * pMid1, * pMid2; |
||
| 211 | float32_t * p2 = p1 + L; |
||
| 212 | const float32_t * tw = (float32_t *) S->pTwiddle; |
||
| 213 | float32_t t1[4], t2[4], t3[4], t4[4], twR, twI; |
||
| 214 | float32_t m0, m1, m2, m3; |
||
| 215 | uint32_t l; |
||
| 216 | |||
| 217 | pCol1 = p1; |
||
| 218 | pCol2 = p2; |
||
| 219 | |||
| 220 | // Define new length |
||
| 221 | L >>= 1; |
||
| 222 | // Initialize mid pointers |
||
| 223 | pMid1 = p1 + L; |
||
| 224 | pMid2 = p2 + L; |
||
| 225 | |||
| 226 | // do two dot Fourier transform |
||
| 227 | for ( l = L >> 2; l > 0; l-- ) |
||
| 228 | { |
||
| 229 | t1[0] = p1[0]; |
||
| 230 | t1[1] = p1[1]; |
||
| 231 | t1[2] = p1[2]; |
||
| 232 | t1[3] = p1[3]; |
||
| 233 | |||
| 234 | t2[0] = p2[0]; |
||
| 235 | t2[1] = p2[1]; |
||
| 236 | t2[2] = p2[2]; |
||
| 237 | t2[3] = p2[3]; |
||
| 238 | |||
| 239 | t3[0] = pMid1[0]; |
||
| 240 | t3[1] = pMid1[1]; |
||
| 241 | t3[2] = pMid1[2]; |
||
| 242 | t3[3] = pMid1[3]; |
||
| 243 | |||
| 244 | t4[0] = pMid2[0]; |
||
| 245 | t4[1] = pMid2[1]; |
||
| 246 | t4[2] = pMid2[2]; |
||
| 247 | t4[3] = pMid2[3]; |
||
| 248 | |||
| 249 | *p1++ = t1[0] + t2[0]; |
||
| 250 | *p1++ = t1[1] + t2[1]; |
||
| 251 | *p1++ = t1[2] + t2[2]; |
||
| 252 | *p1++ = t1[3] + t2[3]; // col 1 |
||
| 253 | |||
| 254 | t2[0] = t1[0] - t2[0]; |
||
| 255 | t2[1] = t1[1] - t2[1]; |
||
| 256 | t2[2] = t1[2] - t2[2]; |
||
| 257 | t2[3] = t1[3] - t2[3]; // for col 2 |
||
| 258 | |||
| 259 | *pMid1++ = t3[0] + t4[0]; |
||
| 260 | *pMid1++ = t3[1] + t4[1]; |
||
| 261 | *pMid1++ = t3[2] + t4[2]; |
||
| 262 | *pMid1++ = t3[3] + t4[3]; // col 1 |
||
| 263 | |||
| 264 | t4[0] = t4[0] - t3[0]; |
||
| 265 | t4[1] = t4[1] - t3[1]; |
||
| 266 | t4[2] = t4[2] - t3[2]; |
||
| 267 | t4[3] = t4[3] - t3[3]; // for col 2 |
||
| 268 | |||
| 269 | twR = *tw++; |
||
| 270 | twI = *tw++; |
||
| 271 | |||
| 272 | // multiply by twiddle factors |
||
| 273 | m0 = t2[0] * twR; |
||
| 274 | m1 = t2[1] * twI; |
||
| 275 | m2 = t2[1] * twR; |
||
| 276 | m3 = t2[0] * twI; |
||
| 277 | |||
| 278 | // R = R * Tr - I * Ti |
||
| 279 | *p2++ = m0 + m1; |
||
| 280 | // I = I * Tr + R * Ti |
||
| 281 | *p2++ = m2 - m3; |
||
| 282 | |||
| 283 | // use vertical symmetry |
||
| 284 | // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i |
||
| 285 | m0 = t4[0] * twI; |
||
| 286 | m1 = t4[1] * twR; |
||
| 287 | m2 = t4[1] * twI; |
||
| 288 | m3 = t4[0] * twR; |
||
| 289 | |||
| 290 | *pMid2++ = m0 - m1; |
||
| 291 | *pMid2++ = m2 + m3; |
||
| 292 | |||
| 293 | twR = *tw++; |
||
| 294 | twI = *tw++; |
||
| 295 | |||
| 296 | m0 = t2[2] * twR; |
||
| 297 | m1 = t2[3] * twI; |
||
| 298 | m2 = t2[3] * twR; |
||
| 299 | m3 = t2[2] * twI; |
||
| 300 | |||
| 301 | *p2++ = m0 + m1; |
||
| 302 | *p2++ = m2 - m3; |
||
| 303 | |||
| 304 | m0 = t4[2] * twI; |
||
| 305 | m1 = t4[3] * twR; |
||
| 306 | m2 = t4[3] * twI; |
||
| 307 | m3 = t4[2] * twR; |
||
| 308 | |||
| 309 | *pMid2++ = m0 - m1; |
||
| 310 | *pMid2++ = m2 + m3; |
||
| 311 | } |
||
| 312 | |||
| 313 | // first col |
||
| 314 | arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2u); |
||
| 315 | // second col |
||
| 316 | arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2u); |
||
| 317 | } |
||
| 318 | |||
| 319 | void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1) |
||
| 320 | { |
||
| 321 | uint32_t L = S->fftLen >> 1; |
||
| 322 | float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4; |
||
| 323 | const float32_t *tw2, *tw3, *tw4; |
||
| 324 | float32_t * p2 = p1 + L; |
||
| 325 | float32_t * p3 = p2 + L; |
||
| 326 | float32_t * p4 = p3 + L; |
||
| 327 | float32_t t2[4], t3[4], t4[4], twR, twI; |
||
| 328 | float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1; |
||
| 329 | float32_t m0, m1, m2, m3; |
||
| 330 | uint32_t l, twMod2, twMod3, twMod4; |
||
| 331 | |||
| 332 | pCol1 = p1; // points to real values by default |
||
| 333 | pCol2 = p2; |
||
| 334 | pCol3 = p3; |
||
| 335 | pCol4 = p4; |
||
| 336 | pEnd1 = p2 - 1; // points to imaginary values by default |
||
| 337 | pEnd2 = p3 - 1; |
||
| 338 | pEnd3 = p4 - 1; |
||
| 339 | pEnd4 = pEnd3 + L; |
||
| 340 | |||
| 341 | tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle; |
||
| 342 | |||
| 343 | L >>= 1; |
||
| 344 | |||
| 345 | // do four dot Fourier transform |
||
| 346 | |||
| 347 | twMod2 = 2; |
||
| 348 | twMod3 = 4; |
||
| 349 | twMod4 = 6; |
||
| 350 | |||
| 351 | // TOP |
||
| 352 | p1ap3_0 = p1[0] + p3[0]; |
||
| 353 | p1sp3_0 = p1[0] - p3[0]; |
||
| 354 | p1ap3_1 = p1[1] + p3[1]; |
||
| 355 | p1sp3_1 = p1[1] - p3[1]; |
||
| 356 | |||
| 357 | // col 2 |
||
| 358 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
| 359 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
| 360 | // col 3 |
||
| 361 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
| 362 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
| 363 | // col 4 |
||
| 364 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
| 365 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
| 366 | // col 1 |
||
| 367 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
| 368 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
| 369 | |||
| 370 | // Twiddle factors are ones |
||
| 371 | *p2++ = t2[0]; |
||
| 372 | *p2++ = t2[1]; |
||
| 373 | *p3++ = t3[0]; |
||
| 374 | *p3++ = t3[1]; |
||
| 375 | *p4++ = t4[0]; |
||
| 376 | *p4++ = t4[1]; |
||
| 377 | |||
| 378 | tw2 += twMod2; |
||
| 379 | tw3 += twMod3; |
||
| 380 | tw4 += twMod4; |
||
| 381 | |||
| 382 | for (l = (L - 2) >> 1; l > 0; l-- ) |
||
| 383 | { |
||
| 384 | // TOP |
||
| 385 | p1ap3_0 = p1[0] + p3[0]; |
||
| 386 | p1sp3_0 = p1[0] - p3[0]; |
||
| 387 | p1ap3_1 = p1[1] + p3[1]; |
||
| 388 | p1sp3_1 = p1[1] - p3[1]; |
||
| 389 | // col 2 |
||
| 390 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
| 391 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
| 392 | // col 3 |
||
| 393 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
| 394 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
| 395 | // col 4 |
||
| 396 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
| 397 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
| 398 | // col 1 - top |
||
| 399 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
| 400 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
| 401 | |||
| 402 | // BOTTOM |
||
| 403 | p1ap3_1 = pEnd1[-1] + pEnd3[-1]; |
||
| 404 | p1sp3_1 = pEnd1[-1] - pEnd3[-1]; |
||
| 405 | p1ap3_0 = pEnd1[0] + pEnd3[0]; |
||
| 406 | p1sp3_0 = pEnd1[0] - pEnd3[0]; |
||
| 407 | // col 2 |
||
| 408 | t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1; |
||
| 409 | t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1]; |
||
| 410 | // col 3 |
||
| 411 | t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1]; |
||
| 412 | t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0]; |
||
| 413 | // col 4 |
||
| 414 | t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1; |
||
| 415 | t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0; |
||
| 416 | // col 1 - Bottom |
||
| 417 | *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0]; |
||
| 418 | *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1]; |
||
| 419 | |||
| 420 | // COL 2 |
||
| 421 | // read twiddle factors |
||
| 422 | twR = *tw2++; |
||
| 423 | twI = *tw2++; |
||
| 424 | // multiply by twiddle factors |
||
| 425 | // let Z1 = a + i(b), Z2 = c + i(d) |
||
| 426 | // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) |
||
| 427 | |||
| 428 | // Top |
||
| 429 | m0 = t2[0] * twR; |
||
| 430 | m1 = t2[1] * twI; |
||
| 431 | m2 = t2[1] * twR; |
||
| 432 | m3 = t2[0] * twI; |
||
| 433 | |||
| 434 | *p2++ = m0 + m1; |
||
| 435 | *p2++ = m2 - m3; |
||
| 436 | // use vertical symmetry col 2 |
||
| 437 | // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i |
||
| 438 | // Bottom |
||
| 439 | m0 = t2[3] * twI; |
||
| 440 | m1 = t2[2] * twR; |
||
| 441 | m2 = t2[2] * twI; |
||
| 442 | m3 = t2[3] * twR; |
||
| 443 | |||
| 444 | *pEnd2-- = m0 - m1; |
||
| 445 | *pEnd2-- = m2 + m3; |
||
| 446 | |||
| 447 | // COL 3 |
||
| 448 | twR = tw3[0]; |
||
| 449 | twI = tw3[1]; |
||
| 450 | tw3 += twMod3; |
||
| 451 | // Top |
||
| 452 | m0 = t3[0] * twR; |
||
| 453 | m1 = t3[1] * twI; |
||
| 454 | m2 = t3[1] * twR; |
||
| 455 | m3 = t3[0] * twI; |
||
| 456 | |||
| 457 | *p3++ = m0 + m1; |
||
| 458 | *p3++ = m2 - m3; |
||
| 459 | // use vertical symmetry col 3 |
||
| 460 | // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i |
||
| 461 | // Bottom |
||
| 462 | m0 = -t3[3] * twR; |
||
| 463 | m1 = t3[2] * twI; |
||
| 464 | m2 = t3[2] * twR; |
||
| 465 | m3 = t3[3] * twI; |
||
| 466 | |||
| 467 | *pEnd3-- = m0 - m1; |
||
| 468 | *pEnd3-- = m3 - m2; |
||
| 469 | |||
| 470 | // COL 4 |
||
| 471 | twR = tw4[0]; |
||
| 472 | twI = tw4[1]; |
||
| 473 | tw4 += twMod4; |
||
| 474 | // Top |
||
| 475 | m0 = t4[0] * twR; |
||
| 476 | m1 = t4[1] * twI; |
||
| 477 | m2 = t4[1] * twR; |
||
| 478 | m3 = t4[0] * twI; |
||
| 479 | |||
| 480 | *p4++ = m0 + m1; |
||
| 481 | *p4++ = m2 - m3; |
||
| 482 | // use vertical symmetry col 4 |
||
| 483 | // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i |
||
| 484 | // Bottom |
||
| 485 | m0 = t4[3] * twI; |
||
| 486 | m1 = t4[2] * twR; |
||
| 487 | m2 = t4[2] * twI; |
||
| 488 | m3 = t4[3] * twR; |
||
| 489 | |||
| 490 | *pEnd4-- = m0 - m1; |
||
| 491 | *pEnd4-- = m2 + m3; |
||
| 492 | } |
||
| 493 | |||
| 494 | //MIDDLE |
||
| 495 | // Twiddle factors are |
||
| 496 | // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i |
||
| 497 | p1ap3_0 = p1[0] + p3[0]; |
||
| 498 | p1sp3_0 = p1[0] - p3[0]; |
||
| 499 | p1ap3_1 = p1[1] + p3[1]; |
||
| 500 | p1sp3_1 = p1[1] - p3[1]; |
||
| 501 | |||
| 502 | // col 2 |
||
| 503 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
| 504 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
| 505 | // col 3 |
||
| 506 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
| 507 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
| 508 | // col 4 |
||
| 509 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
| 510 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
| 511 | // col 1 - Top |
||
| 512 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
| 513 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
| 514 | |||
| 515 | // COL 2 |
||
| 516 | twR = tw2[0]; |
||
| 517 | twI = tw2[1]; |
||
| 518 | |||
| 519 | m0 = t2[0] * twR; |
||
| 520 | m1 = t2[1] * twI; |
||
| 521 | m2 = t2[1] * twR; |
||
| 522 | m3 = t2[0] * twI; |
||
| 523 | |||
| 524 | *p2++ = m0 + m1; |
||
| 525 | *p2++ = m2 - m3; |
||
| 526 | // COL 3 |
||
| 527 | twR = tw3[0]; |
||
| 528 | twI = tw3[1]; |
||
| 529 | |||
| 530 | m0 = t3[0] * twR; |
||
| 531 | m1 = t3[1] * twI; |
||
| 532 | m2 = t3[1] * twR; |
||
| 533 | m3 = t3[0] * twI; |
||
| 534 | |||
| 535 | *p3++ = m0 + m1; |
||
| 536 | *p3++ = m2 - m3; |
||
| 537 | // COL 4 |
||
| 538 | twR = tw4[0]; |
||
| 539 | twI = tw4[1]; |
||
| 540 | |||
| 541 | m0 = t4[0] * twR; |
||
| 542 | m1 = t4[1] * twI; |
||
| 543 | m2 = t4[1] * twR; |
||
| 544 | m3 = t4[0] * twI; |
||
| 545 | |||
| 546 | *p4++ = m0 + m1; |
||
| 547 | *p4++ = m2 - m3; |
||
| 548 | |||
| 549 | // first col |
||
| 550 | arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4u); |
||
| 551 | // second col |
||
| 552 | arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4u); |
||
| 553 | // third col |
||
| 554 | arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4u); |
||
| 555 | // fourth col |
||
| 556 | arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4u); |
||
| 557 | } |
||
| 558 | |||
| 559 | /** |
||
| 560 | * @addtogroup ComplexFFT |
||
| 561 | * @{ |
||
| 562 | */ |
||
| 563 | |||
| 564 | /** |
||
| 565 | * @details |
||
| 566 | * @brief Processing function for the floating-point complex FFT. |
||
| 567 | * @param[in] *S points to an instance of the floating-point CFFT structure. |
||
| 568 | * @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. |
||
| 569 | * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. |
||
| 570 | * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. |
||
| 571 | * @return none. |
||
| 572 | */ |
||
| 573 | |||
| 574 | void arm_cfft_f32( |
||
| 575 | const arm_cfft_instance_f32 * S, |
||
| 576 | float32_t * p1, |
||
| 577 | uint8_t ifftFlag, |
||
| 578 | uint8_t bitReverseFlag) |
||
| 579 | { |
||
| 580 | uint32_t L = S->fftLen, l; |
||
| 581 | float32_t invL, * pSrc; |
||
| 582 | |||
| 583 | if(ifftFlag == 1u) |
||
| 584 | { |
||
| 585 | /* Conjugate input data */ |
||
| 586 | pSrc = p1 + 1; |
||
| 587 | for(l=0; l<L; l++) |
||
| 588 | { |
||
| 589 | *pSrc = -*pSrc; |
||
| 590 | pSrc += 2; |
||
| 591 | } |
||
| 592 | } |
||
| 593 | |||
| 594 | switch (L) |
||
| 595 | { |
||
| 596 | case 16: |
||
| 597 | case 128: |
||
| 598 | case 1024: |
||
| 599 | arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1); |
||
| 600 | break; |
||
| 601 | case 32: |
||
| 602 | case 256: |
||
| 603 | case 2048: |
||
| 604 | arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1); |
||
| 605 | break; |
||
| 606 | case 64: |
||
| 607 | case 512: |
||
| 608 | case 4096: |
||
| 609 | arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1); |
||
| 610 | break; |
||
| 611 | } |
||
| 612 | |||
| 613 | if( bitReverseFlag ) |
||
| 614 | arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); |
||
| 615 | |||
| 616 | if(ifftFlag == 1u) |
||
| 617 | { |
||
| 618 | invL = 1.0f/(float32_t)L; |
||
| 619 | /* Conjugate and scale output data */ |
||
| 620 | pSrc = p1; |
||
| 621 | for(l=0; l<L; l++) |
||
| 622 | { |
||
| 623 | *pSrc++ *= invL ; |
||
| 624 | *pSrc = -(*pSrc) * invL; |
||
| 625 | pSrc++; |
||
| 626 | } |
||
| 627 | } |
||
| 628 | } |
||
| 629 | |||
| 630 | /** |
||
| 631 | * @} end of ComplexFFT group |
||
| 632 | */ |