Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_mat_inverse_f32.c |
||
9 | * |
||
10 | * Description: Floating-point matrix inverse. |
||
11 | * |
||
12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
13 | * |
||
14 | * Redistribution and use in source and binary forms, with or without |
||
15 | * modification, are permitted provided that the following conditions |
||
16 | * are met: |
||
17 | * - Redistributions of source code must retain the above copyright |
||
18 | * notice, this list of conditions and the following disclaimer. |
||
19 | * - Redistributions in binary form must reproduce the above copyright |
||
20 | * notice, this list of conditions and the following disclaimer in |
||
21 | * the documentation and/or other materials provided with the |
||
22 | * distribution. |
||
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
24 | * may be used to endorse or promote products derived from this |
||
25 | * software without specific prior written permission. |
||
26 | * |
||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
38 | * POSSIBILITY OF SUCH DAMAGE. |
||
39 | * -------------------------------------------------------------------- */ |
||
40 | |||
41 | #include "arm_math.h" |
||
42 | |||
43 | /** |
||
44 | * @ingroup groupMatrix |
||
45 | */ |
||
46 | |||
47 | /** |
||
48 | * @defgroup MatrixInv Matrix Inverse |
||
49 | * |
||
50 | * Computes the inverse of a matrix. |
||
51 | * |
||
52 | * The inverse is defined only if the input matrix is square and non-singular (the determinant |
||
53 | * is non-zero). The function checks that the input and output matrices are square and of the |
||
54 | * same size. |
||
55 | * |
||
56 | * Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix |
||
57 | * inversion of floating-point matrices. |
||
58 | * |
||
59 | * \par Algorithm |
||
60 | * The Gauss-Jordan method is used to find the inverse. |
||
61 | * The algorithm performs a sequence of elementary row-operations until it |
||
62 | * reduces the input matrix to an identity matrix. Applying the same sequence |
||
63 | * of elementary row-operations to an identity matrix yields the inverse matrix. |
||
64 | * If the input matrix is singular, then the algorithm terminates and returns error status |
||
65 | * <code>ARM_MATH_SINGULAR</code>. |
||
66 | * \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method" |
||
67 | */ |
||
68 | |||
69 | /** |
||
70 | * @addtogroup MatrixInv |
||
71 | * @{ |
||
72 | */ |
||
73 | |||
74 | /** |
||
75 | * @brief Floating-point matrix inverse. |
||
76 | * @param[in] *pSrc points to input matrix structure |
||
77 | * @param[out] *pDst points to output matrix structure |
||
78 | * @return The function returns |
||
79 | * <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size |
||
80 | * of the output matrix does not match the size of the input matrix. |
||
81 | * If the input matrix is found to be singular (non-invertible), then the function returns |
||
82 | * <code>ARM_MATH_SINGULAR</code>. Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>. |
||
83 | */ |
||
84 | |||
85 | arm_status arm_mat_inverse_f32( |
||
86 | const arm_matrix_instance_f32 * pSrc, |
||
87 | arm_matrix_instance_f32 * pDst) |
||
88 | { |
||
89 | float32_t *pIn = pSrc->pData; /* input data matrix pointer */ |
||
90 | float32_t *pOut = pDst->pData; /* output data matrix pointer */ |
||
91 | float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */ |
||
92 | float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */ |
||
93 | float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */ |
||
94 | uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */ |
||
95 | uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */ |
||
96 | |||
97 | #ifndef ARM_MATH_CM0_FAMILY |
||
98 | float32_t maxC; /* maximum value in the column */ |
||
99 | |||
100 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
101 | |||
102 | float32_t Xchg, in = 0.0f, in1; /* Temporary input values */ |
||
103 | uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */ |
||
104 | arm_status status; /* status of matrix inverse */ |
||
105 | |||
106 | #ifdef ARM_MATH_MATRIX_CHECK |
||
107 | |||
108 | |||
109 | /* Check for matrix mismatch condition */ |
||
110 | if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols) |
||
111 | || (pSrc->numRows != pDst->numRows)) |
||
112 | { |
||
113 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
114 | status = ARM_MATH_SIZE_MISMATCH; |
||
115 | } |
||
116 | else |
||
117 | #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ |
||
118 | |||
119 | { |
||
120 | |||
121 | /*-------------------------------------------------------------------------------------------------------------- |
||
122 | * Matrix Inverse can be solved using elementary row operations. |
||
123 | * |
||
124 | * Gauss-Jordan Method: |
||
125 | * |
||
126 | * 1. First combine the identity matrix and the input matrix separated by a bar to form an |
||
127 | * augmented matrix as follows: |
||
128 | * _ _ _ _ |
||
129 | * | a11 a12 | 1 0 | | X11 X12 | |
||
130 | * | | | = | | |
||
131 | * |_ a21 a22 | 0 1 _| |_ X21 X21 _| |
||
132 | * |
||
133 | * 2. In our implementation, pDst Matrix is used as identity matrix. |
||
134 | * |
||
135 | * 3. Begin with the first row. Let i = 1. |
||
136 | * |
||
137 | * 4. Check to see if the pivot for column i is the greatest of the column. |
||
138 | * The pivot is the element of the main diagonal that is on the current row. |
||
139 | * For instance, if working with row i, then the pivot element is aii. |
||
140 | * If the pivot is not the most significant of the columns, exchange that row with a row |
||
141 | * below it that does contain the most significant value in column i. If the most |
||
142 | * significant value of the column is zero, then an inverse to that matrix does not exist. |
||
143 | * The most significant value of the column is the absolute maximum. |
||
144 | * |
||
145 | * 5. Divide every element of row i by the pivot. |
||
146 | * |
||
147 | * 6. For every row below and row i, replace that row with the sum of that row and |
||
148 | * a multiple of row i so that each new element in column i below row i is zero. |
||
149 | * |
||
150 | * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros |
||
151 | * for every element below and above the main diagonal. |
||
152 | * |
||
153 | * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc). |
||
154 | * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst). |
||
155 | *----------------------------------------------------------------------------------------------------------------*/ |
||
156 | |||
157 | /* Working pointer for destination matrix */ |
||
158 | pOutT1 = pOut; |
||
159 | |||
160 | /* Loop over the number of rows */ |
||
161 | rowCnt = numRows; |
||
162 | |||
163 | /* Making the destination matrix as identity matrix */ |
||
164 | while(rowCnt > 0u) |
||
165 | { |
||
166 | /* Writing all zeroes in lower triangle of the destination matrix */ |
||
167 | j = numRows - rowCnt; |
||
168 | while(j > 0u) |
||
169 | { |
||
170 | *pOutT1++ = 0.0f; |
||
171 | j--; |
||
172 | } |
||
173 | |||
174 | /* Writing all ones in the diagonal of the destination matrix */ |
||
175 | *pOutT1++ = 1.0f; |
||
176 | |||
177 | /* Writing all zeroes in upper triangle of the destination matrix */ |
||
178 | j = rowCnt - 1u; |
||
179 | while(j > 0u) |
||
180 | { |
||
181 | *pOutT1++ = 0.0f; |
||
182 | j--; |
||
183 | } |
||
184 | |||
185 | /* Decrement the loop counter */ |
||
186 | rowCnt--; |
||
187 | } |
||
188 | |||
189 | /* Loop over the number of columns of the input matrix. |
||
190 | All the elements in each column are processed by the row operations */ |
||
191 | loopCnt = numCols; |
||
192 | |||
193 | /* Index modifier to navigate through the columns */ |
||
194 | l = 0u; |
||
195 | |||
196 | while(loopCnt > 0u) |
||
197 | { |
||
198 | /* Check if the pivot element is zero.. |
||
199 | * If it is zero then interchange the row with non zero row below. |
||
200 | * If there is no non zero element to replace in the rows below, |
||
201 | * then the matrix is Singular. */ |
||
202 | |||
203 | /* Working pointer for the input matrix that points |
||
204 | * to the pivot element of the particular row */ |
||
205 | pInT1 = pIn + (l * numCols); |
||
206 | |||
207 | /* Working pointer for the destination matrix that points |
||
208 | * to the pivot element of the particular row */ |
||
209 | pOutT1 = pOut + (l * numCols); |
||
210 | |||
211 | /* Temporary variable to hold the pivot value */ |
||
212 | in = *pInT1; |
||
213 | |||
214 | /* Grab the most significant value from column l */ |
||
215 | maxC = 0; |
||
216 | for (i = l; i < numRows; i++) |
||
217 | { |
||
218 | maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC); |
||
219 | pInT1 += numCols; |
||
220 | } |
||
221 | |||
222 | /* Update the status if the matrix is singular */ |
||
223 | if(maxC == 0.0f) |
||
224 | { |
||
225 | return ARM_MATH_SINGULAR; |
||
226 | } |
||
227 | |||
228 | /* Restore pInT1 */ |
||
229 | pInT1 = pIn; |
||
230 | |||
231 | /* Destination pointer modifier */ |
||
232 | k = 1u; |
||
233 | |||
234 | /* Check if the pivot element is the most significant of the column */ |
||
235 | if( (in > 0.0f ? in : -in) != maxC) |
||
236 | { |
||
237 | /* Loop over the number rows present below */ |
||
238 | i = numRows - (l + 1u); |
||
239 | |||
240 | while(i > 0u) |
||
241 | { |
||
242 | /* Update the input and destination pointers */ |
||
243 | pInT2 = pInT1 + (numCols * l); |
||
244 | pOutT2 = pOutT1 + (numCols * k); |
||
245 | |||
246 | /* Look for the most significant element to |
||
247 | * replace in the rows below */ |
||
248 | if((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC) |
||
249 | { |
||
250 | /* Loop over number of columns |
||
251 | * to the right of the pilot element */ |
||
252 | j = numCols - l; |
||
253 | |||
254 | while(j > 0u) |
||
255 | { |
||
256 | /* Exchange the row elements of the input matrix */ |
||
257 | Xchg = *pInT2; |
||
258 | *pInT2++ = *pInT1; |
||
259 | *pInT1++ = Xchg; |
||
260 | |||
261 | /* Decrement the loop counter */ |
||
262 | j--; |
||
263 | } |
||
264 | |||
265 | /* Loop over number of columns of the destination matrix */ |
||
266 | j = numCols; |
||
267 | |||
268 | while(j > 0u) |
||
269 | { |
||
270 | /* Exchange the row elements of the destination matrix */ |
||
271 | Xchg = *pOutT2; |
||
272 | *pOutT2++ = *pOutT1; |
||
273 | *pOutT1++ = Xchg; |
||
274 | |||
275 | /* Decrement the loop counter */ |
||
276 | j--; |
||
277 | } |
||
278 | |||
279 | /* Flag to indicate whether exchange is done or not */ |
||
280 | flag = 1u; |
||
281 | |||
282 | /* Break after exchange is done */ |
||
283 | break; |
||
284 | } |
||
285 | |||
286 | /* Update the destination pointer modifier */ |
||
287 | k++; |
||
288 | |||
289 | /* Decrement the loop counter */ |
||
290 | i--; |
||
291 | } |
||
292 | } |
||
293 | |||
294 | /* Update the status if the matrix is singular */ |
||
295 | if((flag != 1u) && (in == 0.0f)) |
||
296 | { |
||
297 | return ARM_MATH_SINGULAR; |
||
298 | } |
||
299 | |||
300 | /* Points to the pivot row of input and destination matrices */ |
||
301 | pPivotRowIn = pIn + (l * numCols); |
||
302 | pPivotRowDst = pOut + (l * numCols); |
||
303 | |||
304 | /* Temporary pointers to the pivot row pointers */ |
||
305 | pInT1 = pPivotRowIn; |
||
306 | pInT2 = pPivotRowDst; |
||
307 | |||
308 | /* Pivot element of the row */ |
||
309 | in = *pPivotRowIn; |
||
310 | |||
311 | /* Loop over number of columns |
||
312 | * to the right of the pilot element */ |
||
313 | j = (numCols - l); |
||
314 | |||
315 | while(j > 0u) |
||
316 | { |
||
317 | /* Divide each element of the row of the input matrix |
||
318 | * by the pivot element */ |
||
319 | in1 = *pInT1; |
||
320 | *pInT1++ = in1 / in; |
||
321 | |||
322 | /* Decrement the loop counter */ |
||
323 | j--; |
||
324 | } |
||
325 | |||
326 | /* Loop over number of columns of the destination matrix */ |
||
327 | j = numCols; |
||
328 | |||
329 | while(j > 0u) |
||
330 | { |
||
331 | /* Divide each element of the row of the destination matrix |
||
332 | * by the pivot element */ |
||
333 | in1 = *pInT2; |
||
334 | *pInT2++ = in1 / in; |
||
335 | |||
336 | /* Decrement the loop counter */ |
||
337 | j--; |
||
338 | } |
||
339 | |||
340 | /* Replace the rows with the sum of that row and a multiple of row i |
||
341 | * so that each new element in column i above row i is zero.*/ |
||
342 | |||
343 | /* Temporary pointers for input and destination matrices */ |
||
344 | pInT1 = pIn; |
||
345 | pInT2 = pOut; |
||
346 | |||
347 | /* index used to check for pivot element */ |
||
348 | i = 0u; |
||
349 | |||
350 | /* Loop over number of rows */ |
||
351 | /* to be replaced by the sum of that row and a multiple of row i */ |
||
352 | k = numRows; |
||
353 | |||
354 | while(k > 0u) |
||
355 | { |
||
356 | /* Check for the pivot element */ |
||
357 | if(i == l) |
||
358 | { |
||
359 | /* If the processing element is the pivot element, |
||
360 | only the columns to the right are to be processed */ |
||
361 | pInT1 += numCols - l; |
||
362 | |||
363 | pInT2 += numCols; |
||
364 | } |
||
365 | else |
||
366 | { |
||
367 | /* Element of the reference row */ |
||
368 | in = *pInT1; |
||
369 | |||
370 | /* Working pointers for input and destination pivot rows */ |
||
371 | pPRT_in = pPivotRowIn; |
||
372 | pPRT_pDst = pPivotRowDst; |
||
373 | |||
374 | /* Loop over the number of columns to the right of the pivot element, |
||
375 | to replace the elements in the input matrix */ |
||
376 | j = (numCols - l); |
||
377 | |||
378 | while(j > 0u) |
||
379 | { |
||
380 | /* Replace the element by the sum of that row |
||
381 | and a multiple of the reference row */ |
||
382 | in1 = *pInT1; |
||
383 | *pInT1++ = in1 - (in * *pPRT_in++); |
||
384 | |||
385 | /* Decrement the loop counter */ |
||
386 | j--; |
||
387 | } |
||
388 | |||
389 | /* Loop over the number of columns to |
||
390 | replace the elements in the destination matrix */ |
||
391 | j = numCols; |
||
392 | |||
393 | while(j > 0u) |
||
394 | { |
||
395 | /* Replace the element by the sum of that row |
||
396 | and a multiple of the reference row */ |
||
397 | in1 = *pInT2; |
||
398 | *pInT2++ = in1 - (in * *pPRT_pDst++); |
||
399 | |||
400 | /* Decrement the loop counter */ |
||
401 | j--; |
||
402 | } |
||
403 | |||
404 | } |
||
405 | |||
406 | /* Increment the temporary input pointer */ |
||
407 | pInT1 = pInT1 + l; |
||
408 | |||
409 | /* Decrement the loop counter */ |
||
410 | k--; |
||
411 | |||
412 | /* Increment the pivot index */ |
||
413 | i++; |
||
414 | } |
||
415 | |||
416 | /* Increment the input pointer */ |
||
417 | pIn++; |
||
418 | |||
419 | /* Decrement the loop counter */ |
||
420 | loopCnt--; |
||
421 | |||
422 | /* Increment the index modifier */ |
||
423 | l++; |
||
424 | } |
||
425 | |||
426 | |||
427 | #else |
||
428 | |||
429 | /* Run the below code for Cortex-M0 */ |
||
430 | |||
431 | float32_t Xchg, in = 0.0f; /* Temporary input values */ |
||
432 | uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */ |
||
433 | arm_status status; /* status of matrix inverse */ |
||
434 | |||
435 | #ifdef ARM_MATH_MATRIX_CHECK |
||
436 | |||
437 | /* Check for matrix mismatch condition */ |
||
438 | if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols) |
||
439 | || (pSrc->numRows != pDst->numRows)) |
||
440 | { |
||
441 | /* Set status as ARM_MATH_SIZE_MISMATCH */ |
||
442 | status = ARM_MATH_SIZE_MISMATCH; |
||
443 | } |
||
444 | else |
||
445 | #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ |
||
446 | { |
||
447 | |||
448 | /*-------------------------------------------------------------------------------------------------------------- |
||
449 | * Matrix Inverse can be solved using elementary row operations. |
||
450 | * |
||
451 | * Gauss-Jordan Method: |
||
452 | * |
||
453 | * 1. First combine the identity matrix and the input matrix separated by a bar to form an |
||
454 | * augmented matrix as follows: |
||
455 | * _ _ _ _ _ _ _ _ |
||
456 | * | | a11 a12 | | | 1 0 | | | X11 X12 | |
||
457 | * | | | | | | | = | | |
||
458 | * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _| |
||
459 | * |
||
460 | * 2. In our implementation, pDst Matrix is used as identity matrix. |
||
461 | * |
||
462 | * 3. Begin with the first row. Let i = 1. |
||
463 | * |
||
464 | * 4. Check to see if the pivot for row i is zero. |
||
465 | * The pivot is the element of the main diagonal that is on the current row. |
||
466 | * For instance, if working with row i, then the pivot element is aii. |
||
467 | * If the pivot is zero, exchange that row with a row below it that does not |
||
468 | * contain a zero in column i. If this is not possible, then an inverse |
||
469 | * to that matrix does not exist. |
||
470 | * |
||
471 | * 5. Divide every element of row i by the pivot. |
||
472 | * |
||
473 | * 6. For every row below and row i, replace that row with the sum of that row and |
||
474 | * a multiple of row i so that each new element in column i below row i is zero. |
||
475 | * |
||
476 | * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros |
||
477 | * for every element below and above the main diagonal. |
||
478 | * |
||
479 | * 8. Now an identical matrix is formed to the left of the bar(input matrix, src). |
||
480 | * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst). |
||
481 | *----------------------------------------------------------------------------------------------------------------*/ |
||
482 | |||
483 | /* Working pointer for destination matrix */ |
||
484 | pOutT1 = pOut; |
||
485 | |||
486 | /* Loop over the number of rows */ |
||
487 | rowCnt = numRows; |
||
488 | |||
489 | /* Making the destination matrix as identity matrix */ |
||
490 | while(rowCnt > 0u) |
||
491 | { |
||
492 | /* Writing all zeroes in lower triangle of the destination matrix */ |
||
493 | j = numRows - rowCnt; |
||
494 | while(j > 0u) |
||
495 | { |
||
496 | *pOutT1++ = 0.0f; |
||
497 | j--; |
||
498 | } |
||
499 | |||
500 | /* Writing all ones in the diagonal of the destination matrix */ |
||
501 | *pOutT1++ = 1.0f; |
||
502 | |||
503 | /* Writing all zeroes in upper triangle of the destination matrix */ |
||
504 | j = rowCnt - 1u; |
||
505 | while(j > 0u) |
||
506 | { |
||
507 | *pOutT1++ = 0.0f; |
||
508 | j--; |
||
509 | } |
||
510 | |||
511 | /* Decrement the loop counter */ |
||
512 | rowCnt--; |
||
513 | } |
||
514 | |||
515 | /* Loop over the number of columns of the input matrix. |
||
516 | All the elements in each column are processed by the row operations */ |
||
517 | loopCnt = numCols; |
||
518 | |||
519 | /* Index modifier to navigate through the columns */ |
||
520 | l = 0u; |
||
521 | //for(loopCnt = 0u; loopCnt < numCols; loopCnt++) |
||
522 | while(loopCnt > 0u) |
||
523 | { |
||
524 | /* Check if the pivot element is zero.. |
||
525 | * If it is zero then interchange the row with non zero row below. |
||
526 | * If there is no non zero element to replace in the rows below, |
||
527 | * then the matrix is Singular. */ |
||
528 | |||
529 | /* Working pointer for the input matrix that points |
||
530 | * to the pivot element of the particular row */ |
||
531 | pInT1 = pIn + (l * numCols); |
||
532 | |||
533 | /* Working pointer for the destination matrix that points |
||
534 | * to the pivot element of the particular row */ |
||
535 | pOutT1 = pOut + (l * numCols); |
||
536 | |||
537 | /* Temporary variable to hold the pivot value */ |
||
538 | in = *pInT1; |
||
539 | |||
540 | /* Destination pointer modifier */ |
||
541 | k = 1u; |
||
542 | |||
543 | /* Check if the pivot element is zero */ |
||
544 | if(*pInT1 == 0.0f) |
||
545 | { |
||
546 | /* Loop over the number rows present below */ |
||
547 | for (i = (l + 1u); i < numRows; i++) |
||
548 | { |
||
549 | /* Update the input and destination pointers */ |
||
550 | pInT2 = pInT1 + (numCols * l); |
||
551 | pOutT2 = pOutT1 + (numCols * k); |
||
552 | |||
553 | /* Check if there is a non zero pivot element to |
||
554 | * replace in the rows below */ |
||
555 | if(*pInT2 != 0.0f) |
||
556 | { |
||
557 | /* Loop over number of columns |
||
558 | * to the right of the pilot element */ |
||
559 | for (j = 0u; j < (numCols - l); j++) |
||
560 | { |
||
561 | /* Exchange the row elements of the input matrix */ |
||
562 | Xchg = *pInT2; |
||
563 | *pInT2++ = *pInT1; |
||
564 | *pInT1++ = Xchg; |
||
565 | } |
||
566 | |||
567 | for (j = 0u; j < numCols; j++) |
||
568 | { |
||
569 | Xchg = *pOutT2; |
||
570 | *pOutT2++ = *pOutT1; |
||
571 | *pOutT1++ = Xchg; |
||
572 | } |
||
573 | |||
574 | /* Flag to indicate whether exchange is done or not */ |
||
575 | flag = 1u; |
||
576 | |||
577 | /* Break after exchange is done */ |
||
578 | break; |
||
579 | } |
||
580 | |||
581 | /* Update the destination pointer modifier */ |
||
582 | k++; |
||
583 | } |
||
584 | } |
||
585 | |||
586 | /* Update the status if the matrix is singular */ |
||
587 | if((flag != 1u) && (in == 0.0f)) |
||
588 | { |
||
589 | return ARM_MATH_SINGULAR; |
||
590 | } |
||
591 | |||
592 | /* Points to the pivot row of input and destination matrices */ |
||
593 | pPivotRowIn = pIn + (l * numCols); |
||
594 | pPivotRowDst = pOut + (l * numCols); |
||
595 | |||
596 | /* Temporary pointers to the pivot row pointers */ |
||
597 | pInT1 = pPivotRowIn; |
||
598 | pOutT1 = pPivotRowDst; |
||
599 | |||
600 | /* Pivot element of the row */ |
||
601 | in = *(pIn + (l * numCols)); |
||
602 | |||
603 | /* Loop over number of columns |
||
604 | * to the right of the pilot element */ |
||
605 | for (j = 0u; j < (numCols - l); j++) |
||
606 | { |
||
607 | /* Divide each element of the row of the input matrix |
||
608 | * by the pivot element */ |
||
609 | *pInT1 = *pInT1 / in; |
||
610 | pInT1++; |
||
611 | } |
||
612 | for (j = 0u; j < numCols; j++) |
||
613 | { |
||
614 | /* Divide each element of the row of the destination matrix |
||
615 | * by the pivot element */ |
||
616 | *pOutT1 = *pOutT1 / in; |
||
617 | pOutT1++; |
||
618 | } |
||
619 | |||
620 | /* Replace the rows with the sum of that row and a multiple of row i |
||
621 | * so that each new element in column i above row i is zero.*/ |
||
622 | |||
623 | /* Temporary pointers for input and destination matrices */ |
||
624 | pInT1 = pIn; |
||
625 | pOutT1 = pOut; |
||
626 | |||
627 | for (i = 0u; i < numRows; i++) |
||
628 | { |
||
629 | /* Check for the pivot element */ |
||
630 | if(i == l) |
||
631 | { |
||
632 | /* If the processing element is the pivot element, |
||
633 | only the columns to the right are to be processed */ |
||
634 | pInT1 += numCols - l; |
||
635 | pOutT1 += numCols; |
||
636 | } |
||
637 | else |
||
638 | { |
||
639 | /* Element of the reference row */ |
||
640 | in = *pInT1; |
||
641 | |||
642 | /* Working pointers for input and destination pivot rows */ |
||
643 | pPRT_in = pPivotRowIn; |
||
644 | pPRT_pDst = pPivotRowDst; |
||
645 | |||
646 | /* Loop over the number of columns to the right of the pivot element, |
||
647 | to replace the elements in the input matrix */ |
||
648 | for (j = 0u; j < (numCols - l); j++) |
||
649 | { |
||
650 | /* Replace the element by the sum of that row |
||
651 | and a multiple of the reference row */ |
||
652 | *pInT1 = *pInT1 - (in * *pPRT_in++); |
||
653 | pInT1++; |
||
654 | } |
||
655 | /* Loop over the number of columns to |
||
656 | replace the elements in the destination matrix */ |
||
657 | for (j = 0u; j < numCols; j++) |
||
658 | { |
||
659 | /* Replace the element by the sum of that row |
||
660 | and a multiple of the reference row */ |
||
661 | *pOutT1 = *pOutT1 - (in * *pPRT_pDst++); |
||
662 | pOutT1++; |
||
663 | } |
||
664 | |||
665 | } |
||
666 | /* Increment the temporary input pointer */ |
||
667 | pInT1 = pInT1 + l; |
||
668 | } |
||
669 | /* Increment the input pointer */ |
||
670 | pIn++; |
||
671 | |||
672 | /* Decrement the loop counter */ |
||
673 | loopCnt--; |
||
674 | /* Increment the index modifier */ |
||
675 | l++; |
||
676 | } |
||
677 | |||
678 | |||
679 | #endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
||
680 | |||
681 | /* Set status as ARM_MATH_SUCCESS */ |
||
682 | status = ARM_MATH_SUCCESS; |
||
683 | |||
684 | if((flag != 1u) && (in == 0.0f)) |
||
685 | { |
||
686 | pIn = pSrc->pData; |
||
687 | for (i = 0; i < numRows * numCols; i++) |
||
688 | { |
||
689 | if (pIn[i] != 0.0f) |
||
690 | break; |
||
691 | } |
||
692 | |||
693 | if (i == numRows * numCols) |
||
694 | status = ARM_MATH_SINGULAR; |
||
695 | } |
||
696 | } |
||
697 | /* Return to application */ |
||
698 | return (status); |
||
699 | } |
||
700 | |||
701 | /** |
||
702 | * @} end of MatrixInv group |
||
703 | */ |