Subversion Repositories DashDisplay

Rev

Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------      
2
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3
*      
4
* $Date:        19. March 2015
5
* $Revision:    V.1.4.5
6
*      
7
* Project:      CMSIS DSP Library
8
* Title:            arm_mat_cmplx_mult_q31.c      
9
*      
10
* Description:  Floating-point matrix multiplication.      
11
*      
12
* Target Processor:          Cortex-M4/Cortex-M3/Cortex-M0
13
*
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
*   - Redistributions of source code must retain the above copyright
18
*     notice, this list of conditions and the following disclaimer.
19
*   - Redistributions in binary form must reproduce the above copyright
20
*     notice, this list of conditions and the following disclaimer in
21
*     the documentation and/or other materials provided with the
22
*     distribution.
23
*   - Neither the name of ARM LIMITED nor the names of its contributors
24
*     may be used to endorse or promote products derived from this
25
*     software without specific prior written permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38
* POSSIBILITY OF SUCH DAMAGE.    
39
* -------------------------------------------------------------------- */
40
#include "arm_math.h"
41
 
42
/**    
43
 * @ingroup groupMatrix    
44
 */
45
 
46
/**      
47
 * @addtogroup CmplxMatrixMult      
48
 * @{      
49
 */
50
 
51
/**      
52
 * @brief Q31 Complex matrix multiplication      
53
 * @param[in]       *pSrcA points to the first input complex matrix structure      
54
 * @param[in]       *pSrcB points to the second input complex matrix structure      
55
 * @param[out]      *pDst points to output complex matrix structure      
56
 * @return              The function returns either      
57
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.      
58
 *      
59
 * @details      
60
 * <b>Scaling and Overflow Behavior:</b>      
61
 *      
62
 * \par      
63
 * The function is implemented using an internal 64-bit accumulator.      
64
 * The accumulator has a 2.62 format and maintains full precision of the intermediate      
65
 * multiplication results but provides only a single guard bit. There is no saturation      
66
 * on intermediate additions. Thus, if the accumulator overflows it wraps around and      
67
 * distorts the result. The input signals should be scaled down to avoid intermediate      
68
 * overflows. The input is thus scaled down by log2(numColsA) bits      
69
 * to avoid overflows, as a total of numColsA additions are performed internally.      
70
 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.      
71
 *      
72
 *      
73
 */
74
 
75
arm_status arm_mat_cmplx_mult_q31(
76
  const arm_matrix_instance_q31 * pSrcA,
77
  const arm_matrix_instance_q31 * pSrcB,
78
  arm_matrix_instance_q31 * pDst)
79
{
80
  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
81
  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
82
  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A  */
83
  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
84
  q31_t *px;                                     /* Temporary output data matrix pointer */
85
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A */
86
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
87
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
88
  q63_t sumReal1, sumImag1;                      /* accumulator */
89
  q31_t a0, b0, c0, d0;
90
  q31_t a1, b1, c1, d1;
91
 
92
 
93
  /* Run the below code for Cortex-M4 and Cortex-M3 */
94
 
95
  uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
96
  arm_status status;                             /* status of matrix multiplication */
97
 
98
#ifdef ARM_MATH_MATRIX_CHECK
99
 
100
 
101
  /* Check for matrix mismatch condition */
102
  if((pSrcA->numCols != pSrcB->numRows) ||
103
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
104
  {
105
 
106
    /* Set status as ARM_MATH_SIZE_MISMATCH */
107
    status = ARM_MATH_SIZE_MISMATCH;
108
  }
109
  else
110
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
111
 
112
  {
113
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
114
    /* row loop */
115
    do
116
    {
117
      /* Output pointer is set to starting address of the row being processed */
118
      px = pOut + 2 * i;
119
 
120
      /* For every row wise process, the column loop counter is to be initiated */
121
      col = numColsB;
122
 
123
      /* For every row wise process, the pIn2 pointer is set    
124
       ** to the starting address of the pSrcB data */
125
      pIn2 = pSrcB->pData;
126
 
127
      j = 0u;
128
 
129
      /* column loop */
130
      do
131
      {
132
        /* Set the variable sum, that acts as accumulator, to zero */
133
        sumReal1 = 0.0;
134
        sumImag1 = 0.0;
135
 
136
        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
137
        pIn1 = pInA;
138
 
139
        /* Apply loop unrolling and compute 4 MACs simultaneously. */
140
        colCnt = numColsA >> 2;
141
 
142
        /* matrix multiplication        */
143
        while(colCnt > 0u)
144
        {
145
 
146
          /* Reading real part of complex matrix A */
147
          a0 = *pIn1;
148
 
149
          /* Reading real part of complex matrix B */
150
          c0 = *pIn2;
151
 
152
          /* Reading imaginary part of complex matrix A */
153
          b0 = *(pIn1 + 1u);
154
 
155
          /* Reading imaginary part of complex matrix B */
156
          d0 = *(pIn2 + 1u);
157
 
158
          /* Multiply and Accumlates */
159
          sumReal1 += (q63_t) a0 *c0;
160
          sumImag1 += (q63_t) b0 *c0;
161
 
162
          /* update pointers */
163
          pIn1 += 2u;
164
          pIn2 += 2 * numColsB;
165
 
166
          /* Multiply and Accumlates */
167
          sumReal1 -= (q63_t) b0 *d0;
168
          sumImag1 += (q63_t) a0 *d0;
169
 
170
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
171
 
172
          /* read real and imag values from pSrcA and pSrcB buffer */
173
          a1 = *pIn1;
174
          c1 = *pIn2;
175
          b1 = *(pIn1 + 1u);
176
          d1 = *(pIn2 + 1u);
177
 
178
          /* Multiply and Accumlates */
179
          sumReal1 += (q63_t) a1 *c1;
180
          sumImag1 += (q63_t) b1 *c1;
181
 
182
          /* update pointers */
183
          pIn1 += 2u;
184
          pIn2 += 2 * numColsB;
185
 
186
          /* Multiply and Accumlates */
187
          sumReal1 -= (q63_t) b1 *d1;
188
          sumImag1 += (q63_t) a1 *d1;
189
 
190
          a0 = *pIn1;
191
          c0 = *pIn2;
192
 
193
          b0 = *(pIn1 + 1u);
194
          d0 = *(pIn2 + 1u);
195
 
196
          /* Multiply and Accumlates */
197
          sumReal1 += (q63_t) a0 *c0;
198
          sumImag1 += (q63_t) b0 *c0;
199
 
200
          /* update pointers */
201
          pIn1 += 2u;
202
          pIn2 += 2 * numColsB;
203
 
204
          /* Multiply and Accumlates */
205
          sumReal1 -= (q63_t) b0 *d0;
206
          sumImag1 += (q63_t) a0 *d0;
207
 
208
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
209
 
210
          a1 = *pIn1;
211
          c1 = *pIn2;
212
 
213
          b1 = *(pIn1 + 1u);
214
          d1 = *(pIn2 + 1u);
215
 
216
          /* Multiply and Accumlates */
217
          sumReal1 += (q63_t) a1 *c1;
218
          sumImag1 += (q63_t) b1 *c1;
219
 
220
          /* update pointers */
221
          pIn1 += 2u;
222
          pIn2 += 2 * numColsB;
223
 
224
          /* Multiply and Accumlates */
225
          sumReal1 -= (q63_t) b1 *d1;
226
          sumImag1 += (q63_t) a1 *d1;
227
 
228
          /* Decrement the loop count */
229
          colCnt--;
230
        }
231
 
232
        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.    
233
         ** No loop unrolling is used. */
234
        colCnt = numColsA % 0x4u;
235
 
236
        while(colCnt > 0u)
237
        {
238
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
239
          a1 = *pIn1;
240
          c1 = *pIn2;
241
 
242
          b1 = *(pIn1 + 1u);
243
          d1 = *(pIn2 + 1u);
244
 
245
          /* Multiply and Accumlates */
246
          sumReal1 += (q63_t) a1 *c1;
247
          sumImag1 += (q63_t) b1 *c1;
248
 
249
          /* update pointers */
250
          pIn1 += 2u;
251
          pIn2 += 2 * numColsB;
252
 
253
          /* Multiply and Accumlates */
254
          sumReal1 -= (q63_t) b1 *d1;
255
          sumImag1 += (q63_t) a1 *d1;
256
 
257
          /* Decrement the loop counter */
258
          colCnt--;
259
        }
260
 
261
        /* Store the result in the destination buffer */
262
        *px++ = (q31_t) clip_q63_to_q31(sumReal1 >> 31);
263
        *px++ = (q31_t) clip_q63_to_q31(sumImag1 >> 31);
264
 
265
        /* Update the pointer pIn2 to point to the  starting address of the next column */
266
        j++;
267
        pIn2 = pSrcB->pData + 2u * j;
268
 
269
        /* Decrement the column loop counter */
270
        col--;
271
 
272
      } while(col > 0u);
273
 
274
      /* Update the pointer pInA to point to the  starting address of the next row */
275
      i = i + numColsB;
276
      pInA = pInA + 2 * numColsA;
277
 
278
      /* Decrement the row loop counter */
279
      row--;
280
 
281
    } while(row > 0u);
282
 
283
    /* Set status as ARM_MATH_SUCCESS */
284
    status = ARM_MATH_SUCCESS;
285
  }
286
 
287
  /* Return to application */
288
  return (status);
289
}
290
 
291
/**    
292
 * @} end of MatrixMult group    
293
 */